МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ И ПРИКЛАДНАЯ МАТЕМАТИКА

УДК 629.7

DOI 10.15622/sp.2019.18.6.1462-1490

Е.П. МИНАКОВ, Б.В. СОКОЛОВ, С.Е. ШАЛДАЕВ, М.А. АЛЕКСАНДРОВ РАСЧЕТ И ИССЛЕДОВАНИЕ ПРОСТРАНСТВЕННО-ВРЕМЕННЫХ ХАРАКТЕРИСТИК РУБЕЖЕЙ АТАКИ АСТЕРОИДОВ ОРБИТАЛЬНЫМИ СРЕДСТВАМИ

Минаков Е.П., Соколов Б.В., Шалдаев С.Е., Александров М.А. Расчет и исследование пространственно-временных характеристик рубежей атаки астероидов орбитальными средствами.

Аннотация. Развитие работ по борьбе с астероилной опасностью требует построения и исследования областей космического пространства, перемещаясь в которых космические аппараты-перехватчики могут воздействовать на астероиды. В предлагаемой рубежами пространственно-временные такие области названы атаки, статье характеристики которых зависят от параметров орбит астероидов, а также фазовых координат узловых точек. В указанных точках происходит пересечение траекторией движения астероидов и плоскостей орбит космических аппаратов-перехватчиков. В случае воздействия космических аппаратов-перехватчиков на астероиды в узловых точках особую значимость приобретает исследование пространственно-временных характеристик рубежей атаки с учетом ограничений на относительные скорости сближения астероидов и космических аппаратов-перехватчиков. Для этого предлагается построить и проанализировать соответствующие зоны обратной досягаемости.

В состав разработанного комплекса моделей включена имитационная модель, с использованием которой генерируются случайные углы между проекциями векторов скоростей астероидов на плоскости орбит космических аппаратов-перехватчиков и текущими направлениями на годографы векторов их скоростей в узловых точках, а также аналитическая модель оценивания пространственно-временных характеристик рубежей атаки астероидов, задаваемых радиусами их наружных и внутренних границ и используемых для определенных значений соответствующих аргументов широт и времени прибытия космических аппаратов-перехватчиков в узловые точки.

Апробация разработанных моделей и исследование соответствующих характеристик рубежей атаки проведена в ходе вычислительных экспериментов по двухцикловому моделированию величин углов между проекциями векторов скоростей астероидов на плоскости орбит космических аппаратов-перехватчиков и текущими направлениями на годографы векторов их скоростей в узловых точках. Полученные результаты позволили провести верификацию и валилацию разработанных моделей, на основе чего был сделан вывод о требуемой степени их адекватности. Также предложена процедура оценивания параметров рубежей атаки, зависящих как от значений аргументов широт космических аппаратов-перехватчиков, так и высот их полета над поверхностью Земли. При этом обоснован подход к оцениванию пространственно-временных характеристик рубежей атаки астероилов космическими аппаратами-перехватчиками для любых внутриплоскостных параметров их орбит.

Ключевые слова: астероидная опасность, космический аппарат-перехватчик, отделяемая часть, узловая точка, рубеж атаки, пространственно-временные характеристики.

1. Введение. Одной из главных причин возможного исчезновения жизни на Земле является возможное столкновение планеты с астероидами [1-14]. Многочисленные исследования

зарубежных отечественных ученых показывают. что И возможность (вероятность) появления такого события ничтожна мала, но все-таки она не нулевая [4, 9, 12-19]. Падение Тунгусского метеорита в начале XX века, недавнее падение метеорита в районе города Челябинска говорит о том, что опасность возникновения планетарной катастрофы существует. Одно из направлений развития работ по борьбе с астероидной опасностью, проводимых в настоящее время в нашей рубежом посвященных вопросам стране и за и созлания соответствующих систем автономного автоматического управления космическими аппаратами-перехватчиками (КАП) [14-19, 21-26], связано с построением в околоземном или окололунном космическом пространстве таких областей, перемещаясь в пределах которых предназначаемые для уничтожения движущихся к Земле астероидов КАП могут гарантированно (с баллистической точки зрения) достигать и поражать их [27-30]. Другими словами, для любого момента времени в случае нахождения КАП в рассматриваемой области всегда может быть найдена допустимая баллистическая траектория перехвата астероида указанным аппаратом (либо аппаратами) в соответствующей узловой точке. Быстротечность событий, связанных с падением на Землю астероидов, объективно существующее запаздывание в процессах их обнаружения и тому подобное существенно затрудняет своевременное выведение КАП на орбиты, компланарные с орбитами движения астероидов. В этой связи возможные сценарии уничтожение астероидов должны заранее быть спланированы и ориентированы на так называемые узловые точки (УТ) траекторий движения КАП, которые образуются при пересечении астероидом (целью) плоскости движения КАП и являются наиболее предпочтительными с точки зрения их энергетических затрат при выполнении перехвата. Данные точки задаются дальностью от центра Земли или Луны, а также углом между направлением на УТ и линией пересечения плоскостей орбит астероида и КАП. Еще один важный параметр УТ — время пересечения астероидом плоскости движения КАП [28-30].

На эффективность уничтожения астероидов влияет множество факторов первую очередь тактико-технические и в характеристики (TTX) КАП [23, 28-29]. Очевидно, что эти характеристики имеют первостепенное значение при формировании пространственного положения областей, в пределах которых в время должны начинать движение КАП определенное для уничтожения астероидов. Определение пространственно-временных характеристик указанных областей (рубежей атаки астероидов) основывается на учете таких параметров КАП, как их предельные

относительные скорости перемещения относительно перехватываемых ими астероидов. При этом под рубежом атаки (РА) понимается такая пространственно-временная область (ПРВО), двигаясь в которой КАП может поразить астероид в УТ. В этой связи разработка математических моделей и исследование пространственно-временных характеристик (параметров) РА с соответствующих баллистических vчетом и технических ограничений на условия применения КАП является новой и актуальной научно-технической задачей, требующей своего решения.

2. Основные понятия и постановка залачи исследования. Решение широкого круга задач, связанных с организацией целенаправленных воздействий на потенциально опасные астероиды, должно основываться, как уже было сказано ранее. на формировании (расчете) в космическом пространстве пространственновременных областей (IIPBO), находясь в которых КАП гарантированно (с баллистической точки зрения) перехватывает соответствующий конкретный астероид. К таким ПРВО относятся зоны атаки астероидов (ЗА), то есть ПРВО, в пределах которых должно быть осуществлено требуемое воздействие по ним, и рубежи атаки (РА) астероидов, представляющие собой, как уже говорилось ранее, ПРВО, находясь в которых КАП может осуществить движение по соответствующей баллистической траектории лля совершения конкретных воздействий на астероид в зонах атаки. Предварительный расчет границ указанных зон и их пространственно-временных характеристик позволяет существенно сократить затраты времени на данных, формирование реализацию подготовку исходных И соответствующих управляющих воздействий на борту КАП при выполнении им маневра-перехвата астероида в конкретных условиях обстановки. Более того, как показывает анализ, предварительный расчет PA И их характеристик при решении залач линамического целераспределения и целенаведения группировки КАП на несколько одновременно летящих в сторону Земли астероидов или их осколков позволит существенно повысить оперативность синтеза и реализации программ перехвата указанных целей [29, 31, 32].

В соответствии с введенными понятиями зона атаки астероида Q определяется на декартовом произведении двух базисных множеств — множества точек W, из которых может быть осуществлено требуемое воздействие по ним, и множества времен R, когда это воздействие может произойти: $Q = W \times R$. В свою очередь, РА, представляющий собой множество точек (область) A, которое также может быть задано на декартовом произведение двух множеств: множества B —

множества точек пространственного положения РА и множества D — времен его существования, то есть $A = B \times D$.

С учетом вышеизложенного особую актуальность приобретает задача расчета и оценивания элементов множества A на основе элементов множеств Q и G (G — множество тактико-технических и баллистических характеристик КАП), а также поиска (конструктивного описания) отображения $F : \{Q, G\} \rightarrow A$.

В состав ТТХ КАП могут входить относительные расстояния между ними и астероидами, их относительные линейные и угловые скорости в момент воздействия КАП на астероиды и некоторые другие характеристики. В качестве баллистических характеристик могут выступать параметры орбит КАП и астероидов, фазовые координаты областей воздействия на астероиды и тому подобное. Помимо того, должны быть заданы способы применения КАП. Из множества характеристик статье исследуются указанных в только пространственно-временные характеристики РА, формируемые в околоземном космическом пространстве с учетом ограничений на относительные скорости между ними и КАП.

Исходя из вышеизложенного содержательного описания исследуемых задач, будем считать, что нам заданы:

– параметры орбиты КАП — $\{a_{ki}, e_{ki}, i_{ki}\} \subset G$;

– допустимая относительная скорость движения астероида и КАП в момент применения КАП — $\Delta V_{OTH} \in G$;

– параметры орбиты *j*-го астероида — $\{a_i, e_j, i_i, \omega_i\}$.

Для *i*-й УТ по $\{a_j, e_j, i_j, \omega_j\}$ могут быть определены параметры движения *j*-го астероида — $\{r_{ji}, \varphi_{ji}, t_{ji}, V_{ji}, \Theta_{ji}\}$, где r_{ji} — расстояние УТ от центра Земли или Луны; φ_{ji} , — угол между направлением на УТ и линией пересечения плоскостей орбит астероида и КАП; t_{ji} — время пролета астероидом плоскости движения КАП; V_{Aji} — скорость астероида в УТ; Θ_{Aji} — угол бросания астероида в УТ [2,7];

В ходе исследований пространственно-временных характеристик РА были приняты следующие допущения:

1) движение астероида и КАП моделируется по законам Кеплера;

2) КАП способен выполнять только компланарное маневрирование;

3) воздействие КАП на астероид осуществляется в УТ;

4) геометрические размеры Земли (Луны) не учитываются.

Новым объектом в исследовании характеристик РА астероидов в УТ является «зона обратной досягаемости» при ограничении на относительную скорость движения КАП и астероида в момент применения КАП, представляющая собой ПРВО, получаемую на основе обратного отображения множества допустимых значений начальных условий (НУ) движения КАП — $\{< r_{Kji}, V_{Kji}, \theta_{K1ji} >\}$ в ПРВО возможных движений КАП, обеспечивающих требуемое воздействия на астероид с учетом заданных ограничений на относительную скорость их сближения (рисунок 1).

Основа проволимого исследования заключается в vстановлении закономерностей изменения максимального и минимального радиусов РА астероида и соответствующих времен в зависимости от ориентации его вектора допустимой скорости движения — $\beta \in [0^\circ, 360^\circ)$, обеспечивающего удовлетворение ограничения на относительную скорость движения КАП и астероида в момент применения КАП — ΔV_{OTH} , для различных значений аргумента широты КАП — $u \in [0^\circ, 360^\circ)$ на основе построения «зон обратных досягаемостей».

Рис. 1. Рубежи атаки астероида

Для проведения вычислительных экспериментов помимо указанных исходных данных должны быть также заданы шаг варьирования положения допустимого вектора скорости КАП в момент применения по астероиду — $\Delta\beta$ и шаг изменения аргумента широты для оценивания пространственных характеристик РА.

3. Модель оценивания характеристик РА при ограничениях на относительные скорости применения КАП по астероиду методом Монте-Карло. Основными математическими зависимостями в указанной модели являются:

 определение трансверсальной составляющей вектора скорости *j*-го астероида в *i*-й УТ [29, 30]:

$$V_{A\tau ji} = V_{Aji} \cos \Theta_{Aji}, \tag{1}$$

– вычисление отрезка, проектирующего годограф вектора скорости j-го астероида в i-й УТ на плоскость орбиты КАП:

$$V_{Ahji} = V_{A\tau ji} \sin \gamma_j, \tag{2}$$

где $\gamma_j = i_K - i_{Aj}$ — угол некомпланарности между орбитами КАП и *j*-го астероида; i_K — наклонение орбиты КАП; i_{Aj} — наклонение орбиты *j*-го астероида;

 – расчет радиуса зоны годографов векторов скоростей движения КАП в *i*-й УТ, пригодных для воздействия по *j*-му астероиду:

$$\Delta V_{rji} = \sqrt{\Delta V_{OTH}^2 - V_{Ahji}^2}.$$
(3)

Таким образом, по приведенным зависимостям может быть сформировано множество значений начальных условий движения [30] КАП в УТ, обеспечивающих формирование «зон обратной досягаемости» при ограничении на относительную скорость движения КАП и астероида в момент применения КАП:

- время t_{ii};
- радиус r_{ji};
- 3) аргумент широты φ_{ii} ;

4) множество пригодных для применения по *j*-му астероиду в *i*-й УТ значений скоростей КАП — $V_{Kji} \in [0, \Delta V_{rji}];$

5) множество пригодных для применения по *j*-му астероиду в *i*-й УТ значений углов бросания КАП — $\Theta_{Kii} \in [0^\circ, 360^\circ)$.

В качестве одного из способов оценивания пространственновременных характеристик РА астероидов в УТ был выбран способ, базирующийся на реализациия метода Монте-Карло, используя который удалось рассчитать и проанализировать такие их параметры, как допустимые большие полуоси — $a_{PA} = a_{PA}(V_{Kji}, \Theta_{Kj}; t_{ji}, r_{ji})$, относительные эксцентриситеты — $e_{PA} = e_{PA}(V_{Kji}, \Theta_{Kj}; t_{ji}, r_{ji})$, аргументы широт перигеев — $\omega_{PA} = \omega_{PA}(V_{Kji}, \Theta_{Kj}; t_{ji}, r_{ji})$ и времена прохождения перигеев — $\tau_{\Pi PA} = \tau_{\Pi PA}(V_{Kji}, \Theta_{Kji}; t_{ji}, r_{ji})$. Для проведения указанных расчетов осуществлялось стохастическое моделирование возможных реализаций допустимых значений величин V_{Kji} и Θ_{Kji} при заданных t_{ji} и r_{ji} :

$$a_{PA} = r_{ji} / (2 - k), \tag{4}$$

где $k = r_{ji} \cdot V_{Kji}^2 / K_3$,

$$e_{PA} = \sqrt{1 - k(2 - k)\cos\Theta_{Kji}}; \qquad (5)$$

$$\omega_{PA} = \varphi_{ji} - \arccos[(a_{PA}(1 - e_{PA}^2) / r_{ji} - 1) / e_{PA}];$$
(6)

$$\tau_{\Pi PA} = t_{ji} + \sqrt{a_{PA}^3 / K_3 (E_{ji} - e_{PA} \sin E_{ji})};$$
(7)

где
$$\begin{cases} \sin E_{ji} = (\sqrt{1 - e_{PA}^2 \sin \varphi_{ji}}) / (1 + e_{PA} \cos(\varphi_{ji} - \omega_{PA})) \\ \cos E_{ji} = (e_{PA} + \cos \varphi_{ji}) / (1 + e_{PA} \cos(\varphi_{ji} - \omega_{PA})) \end{cases}$$

По значениям a_{PA} , e_{PA} , ω_{PA} и $\tau_{\Pi PA}$ для различных значений аргументов широт $u \in [\varphi_{ji}, \varphi_{ji} - 360^\circ)$ были оценены радиусы r и соответствующие моменты времен t. Соответствующие зависимости имеют вид:

$$r(u) = a_{PA}(1 - e_{PA}^2) / (1 + e_{PA}\cos(u - \omega_{PA}));$$
(8)

$$t(u) = \tau_{\Pi PA} + \sqrt{a_{PA}^3 / K_3} (E - e_{PA} \sin E),$$
(9)

1468

где $K_3 = 398600,44 \kappa M^3 / c^2$ — гравитационная постоянная Земли; E(u) — эксцентрическая аномалия:

$$\begin{cases} \sin E(u) = (\sqrt{1 - e_{PA}^2 \sin u}) / (1 + e_{PA} \cos(u - \omega_{PA}))) \\ \cos E(u) = (e_{PA} + \cos u) / (1 + e_{PA} \cos(u - \omega_{PA}))) \end{cases}$$
 (10)

Граничное время существования РА определяется временем t_{ji} . В любой момент времени $t(u) < t_{ji}$ пространственное положение РА в плоскости движения КАП (ОЧ) может быть оценено в соответствии с зависимостью:

$$\begin{cases} r_B(u) = \max_N \{r_N(u)\}; \\ r_H(u) = \min_N \{r_N(u)\}. \end{cases}$$
(11)

Время *t* определяется по формуле:

$$t = t_{ji} - \Delta t, \tag{12}$$

где $\Delta t = \sqrt{a_{PA}^3 / K_3} \cdot [(E_{ji} - E(u)) - e_{PA}^2 (\sin E_{ji} - \sin E(u))].$

В то же время задание случайным образом значений угла Θ_{Kji} приводит к неоднозначности в определении модуля вектора скорости V_{Kji} . В этой связи при проведении исследований характеристик РА при ограничениях на относительные скорости целесообразно перейти к моделированию угла β между проекции вектора скорости *j*-го астероида в *i*-й УТ на плоскость орбиты КАП и текущим направлением на годограф вектора скорости КАП (OЧ), детерминировано изменяющегося от 0⁰ до 360⁰ (рисунок 2).

Тогда для моделирования V_{Kji} и Θ_{Kji} необходимо:

1) вычисление проекции вектора скорости *j*-го астероида в *i*-й УТ на плоскость орбиты КАП:

$$V_{Afji} = V_{A\tau ji} \cdot \cos \gamma_j; \tag{13}$$

1469

2) при заданном угле $\beta = \beta_0$ моделирование по равномерному закону распределения случайных величин, принадлежащих отрезку $s \in [0, \Delta V_{rii}]$;

3) определение V_{Kii} :

$$V_{Kji} = \sqrt{s^2 + V_{Afji}^2 - 2 \cdot s \cdot V_{Afji} \cdot \cos\beta}; \qquad (14)$$

4) оценивание угла бросания Θ_{Kii} :

$$\Theta_{Kji} = \alpha + \Theta_{dji}; \tag{15}$$

где $\sin \alpha = s \cdot \sin \beta / V_{Kji}$; $tg \Theta_{dji} = V_{Adji} / V_{Ahji}$; $V_{Adji} = V_{Aji} \cdot \sin \Theta_{Aji}$.

Рис. 2. Геометрическое описание взаимосвязи V_{Kii} и Θ_{Kii}

4. Алгоритм оценивания характеристик РА при ограничениях на относительные скорости применения КАП по астероиду, а также результаты вычислительных экспериментов.

Основными этапами реализации алгоритма являются:

1. Ввод исходных данных.

2. Расчет $V_{A\tau ii}$, V_{Ahii} , ΔV_{rii} , V_{Afii} по формулам (1)-(3).

3. Задание начального значения аргумента широты КАП — $u = \varphi_{ii}$.

4. Задание начального значения угла $\beta = 0^{\circ}$.

5. Задание начального значения счетчика числа испытаний в методе Монте-Карло *N*:=1.

6. Моделирование случайной величины *s* по равномерному закону распределения на интервале $[0, \Delta V_{rii}]$.

7. Расчет величин V_{Kji} , α , Θ_{dji} , V_{Adji} , Θ_{Kji} по формулам (14)-(15).

8. Расчет величин k_N , a_{PAN} , e_{PAN} , ω_{PAN} , E_{jiN} , τ_{PAN} по формулам (4)-(10).

9. Расчет $r_N(u)$, $E_N(u)$, $t_N(u)$, Δt , t по формулам (11)-(12) и вывод значений $r_N(u)$, $t_N(u)$.

10. Задание следующего значения счетчика числа испытаний в методе Монте-Карло N := N + 1.

11. Оценивание величины N: если $N \le N_3$, то переход на п.6; если $N > N_3$, то переход на п.12 (в ходе вычислительных экспериментов величина N_3 принималась равной 200).

12. Изменение значения угла β на величину $\Delta\beta$.

13. Оценивание величины β : если $\beta \le 360^{\circ}$, то переход на пункт 5; если $\beta > 360^{\circ}$, то переход на пункт 14.

14. Определение величин $r_{R}(u)$, $r_{H}(t)$, t по формулам (11), (12).

15. Изменение значения аргумента широты КАП: $u := u - \Delta u$ (шаг изменения Δu в ходе вычислительных экспериментов принимался равным 10⁰).

16. Оценивание величины u: если $u \ge 0^\circ$, то переход на пункт 4; если $u < 0^\circ$, то переход на пункт 17.

17. Вывод $\{r_N(u), t_N(u)\}$.

Исходные данные для проведения вычислительных экспериментов приведены в таблице 1

	Tuominga it menodinite daminise dam npobedomini onenopmisentob									
r_{ji} ,	$\varphi_{_{ji}},$	t_{ji} ,	$V_{Aji},$	$\Theta_{Aji},$	i_K ,	i_{Aj} ,	$\Delta V_{omh},$	Δt ,	$\Delta\beta$,	<i>K</i> ₃ ,
КМ	град	с	км/с	гр	град	гр	км/с	с	гр	км ³ /с ²
7000	45	1000	10	1	63	63,5	0,5	60	10	398600,44

Таблица 1. Исходные данные для проведения экспериментов

В ходе вычислительных экспериментов была исследована зависимость изменения величины модуля радиуса-вектора r(u) от изменения величины радиуса точки годографа вектора скорости КАП — *s* при различных значениях угла β . Результаты исследования указанных зависимостей иллюстрируются при $u = 45^{\circ}$ для $\beta = 0^{\circ}(30^{\circ})150^{\circ}$ и десяти значений *s* от 0 км до $\Delta V_{rji}c$ шагом $\Delta V_{rji}/10$ по каждому β данными таблице 2.

β , гр.	0	30	60	90	120	150
s, км/с	r(u),км	r(u),км	r(u),км	r(u),км	r(u),км	r(u),км
0,0492328	40111,787	40183,953	41043,96	42538,038	44335,636	45945,492
0,0984656	37365,749	37471,54	39006,345	41833,652	45487,299	48994,108
0,1476985	34937,957	35050,181	37113,167	41129,947	46702,639	52459,779
0,1969313	32776,195	32875,631	35349,807	40427,118	47986,919	56434,385
0,2461641	30839,077	30912,181	33703,553	39725,362	49345,991	61038,932
0,2953969	29093,378	29130,694	32163,301	39024,881	50786,39	66436,097
0,3446298	27512,12	27507,163	30719,307	38325,882	52315,429	72849,842
0,3938626	26073,166	26021,623	29362,986	37628,572	53941,323	80597,284
0,4430954	24758,183	24657,342	28086,744	36933,163	55673,331	90142,746
0,4923282	23551,857	23400,186	26883,839	36239,868	57521,925	102194,39

Таблица 2. Результаты исследования зависимости величины модуля r(u) от S

Соответствующие графики приведены на рисунке 3(а). Аналогичные результаты для $\beta = 180^{\circ}(30^{\circ})330^{\circ}$ приведены в таблице 3. Соответствующие графики приведены на рисунке 3(б).

Рис. 3. Графики зависимостей r(u) от *s* для: a) $\beta = 0^{\circ}(30^{\circ})150^{\circ}$; б) для $\beta = 180^{\circ}(30^{\circ})330^{\circ}$

Значения $r_B(u)$, $r_H(u)$ получаемые по формулам (11) для тех же значений β и соответствующие времена $t_B(u)$, $t_H(u)$ сведены в таблице 4.

β , гр.	180	210	240	270	300	330
s, км/с	r(u),км	r(u),км	r(u),км	r(u),км	r(u),км	r(u),км
0,0492328	46846,097	46718,983	45622,845	43948,092	42204,845	40830,612
0,0984656	51036,632	50703,28	48206,722	44653,392	41217,555	38664,199
0,1476985	55970,684	55315,543	51021,567	45358,637	40277,52	36707,898
0,1969313	61865,168	60716,341	54099,393	46063,654	39381,538	34932,552
0,2461641	69030,468	67126,082	57478,419	46768,276	38526,687	33314,161
0,2953969	77926,863	74855,769	61204,643	47472,339	37710,296	31832,789
0,3446298	89267,434	84358,866	65333,93	48175,686	36929,923	30471,74
0,3938626	104219,25	96323,42	69934,808	48878,164	36183,325	29216,926
0,4430954	124833,05	111846,29	75092,271	49579,627	35468,443	28056,376
0,4923282	155074,9	132789,74	80913,041	50279,931	34783,38	26979,851

MATHEMATICAL MODELING, NUMERICAL METHODS

Таблица 3. Результаты исследования зависимости величины модуля r(u) от s

Таблица 4. Результаты исследования зависимостей величин $r_B(u)$, $r_H(u)$,

eta , гр.	<i>г_В</i> , км	r_H , км	t_B , c	t_H , c
0	40111,787	23551,857	25697,535	13457,179
30	40183,953	23400,186	26031,271	14592,66
60	41043,96	26883,839	26977,724	18736,992
90	42538,038	36239,868	28368,744	29137,213
120	57521,925	44335,636	55956,634	29887,121
150	102194,39	45945,492	122787,64	31088,553
180	155074,9	46846,097	190672,19	31547,223
210	132789,74	46718,983	122456,82	31082,969
240	80913,041	45622,845	55748,887	29877,945
270	50279,931	43948,092	29035,722	28358,862
300	42204,845	34783,38	26969,722	18688,367
330	40830,612	26979,851	26026,867	14572,674

 $t_B(u)\,,\,t_H(u)$ от eta

Соответствующие графики приведены на рисунках 4(а) и 4(б).

В ходе вычислительных экспериментов были получены значения $r_B(u)$, $r_H(u)$ для различных значений $u = 0^\circ, 15^\circ, 30^\circ$ и 45° (таблица 5).

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ И ПРИКЛАДНАЯ МАТЕМАТИКА

Рис. 4. Графики зависимостей от β : a) $r_B(u)$, $r_H(u)$; б) $t_B(u)$, $t_H(u)$ от β

β, гр.	<i>r_B</i> , км	r_B , км	<i>r_B</i> , км	<i>г_В</i> , км	$r_{\!H}$, км	$r_{\!H}$, км	$r_{\!H}$, км	$r_{\!H}$, км
и, гр.	0	15	30	45	0	15	30	45
0	23512,331	38818,7	50613,533	40111,787	20979,733	28964,212	30534,493	23551,857
30	23684,04	39250,309	51113,799	40183,953	22434,147	31386,242	32016,972	23400,186
60	24635,098	39959,209	52465,156	41043,96	23892,948	37028,253	38687,279	26883,839
90	27004,564	46418,893	54692,866	42538,038	24082,176	40768,862	54396,421	36239,868
120	28513,22	57639,238	88365,275	57521,925	24197,803	41453,692	56430,487	44335,636
150	28415,386	64007,521	143733,22	102194,39	24206,61	41807,048	57962,284	45945,492
180	26941,345	60533,183	165038,83	155074,9	24107,31	41720,792	58475,11	46846,097
210	24901,26	51366,242	119914,61	132789,74	23929,742	41228,837	57796,383	46718,983
240	23723,559	42334,601	77007,483	80913,041	22966,903	40486,093	56184,127	45622,845
270	23542,918	39702,877	54169,847	50279,931	21480,9	35588,436	52619,65	43948,092
300	23433,152	39078,403	52313,168	42204,845	20590,766	31235,944	39595,338	34783,38
330	23421,617	38758,956	51042,845	40830,612	20390,046	29034,013	32941,763	26979,851

Таблица 5. Результаты исследования зависимостей величин $r_{R}(u)$, $r_{H}(u)$ от β

Соответствующие графики приведены на рисунках 5(а) и 5(б).

Анализ результатов, полученных в ходе вычислительных экспериментов, показывает, что годограф вектора скорости КАП, обеспечивающий $r_B(u)$, $r_H(u)$, должен принадлежать окружности скоростей движения КАП в *i*-й УТ, которые пригодны для воздействия по *j*-му астероиду.

MATHEMATICAL MODELING, NUMERICAL METHODS

Рис. 5. Графики зависимостей от β : a) $r_{R}(u)$; б) $r_{H}(u)$

5. Аналитическая модель оценивания пространственновременных характеристик РА астероидов. Оценивания пространственно-временных характеристик РА включает в себя:

1) определение величины проекции вектора скорости *j*-го астероида в *i*-й УТ на плоскость орбиты КАП — V_{Afii} по формуле (13);

2) определение начальных условий движения КАП по орбите, соответствующей «зоне обратной досягаемости» при $\beta = \beta_0 = 0^\circ - V_{ji}(0^\circ)$, $r_{ji}, \theta_1(0^\circ)$:

$$V_{ji}(0^{\circ}) = V_{Afji} + \Delta V_{rji} \mathcal{H};$$
(16)

$$\theta_1(0^\circ) = \arccos(V_{A\tau\,ii} \cdot \cos\gamma_i / \Delta V_{ii}); \tag{17}$$

3) вычисление по известным начальным условиям кеплеровских элементов орбиты КАП, соответствующей $\beta = \beta_0 = 0^\circ$ по формулам (4)-(6);

4) определение начальных условий движения КАП по орбите, соответствующей «зоне обратной досягаемости» при $\beta = 180^\circ$: $V_{ii}(180^\circ)$, r_{ii} , $\theta_1(180^\circ)$:

$$V_{ji}(180^\circ) = V_{Afji} - \Delta V_{rji}; \tag{18}$$

$$\theta_1(0^\circ) = \arccos(V_{A\tau ji} \cdot \cos \gamma_j / \Delta V_{rji}); \tag{19}$$

SPIIRAS Proceedings. 2019. Vol. 18 No. 6. ISSN 2078-9181 (print) ISSN 2078-9599 (online) www.proceedings.spiiras.nw.ru

5) вычисление по известным начальным условиям кеплеровских элементов орбиты КАП, соответствующей $\beta = 180^{\circ}$ по формулам (4)–(6);

6) задание начального значения угла $\beta \coloneqq \beta_0 = 0^\circ$;

7) вычисление модуля предельного пригодного вектора скорости КАП в момент применения по *j*-му астероиду для заданного значения угла β :

$$V_{ji}(\beta) = \sqrt{V_{Afji}^2 + \Delta V_{rji}^2 + 2V_{Afji} \cdot \Delta V_{rji} \cdot \cos\beta};$$

8) определение угла бросания проекции вектора скорости *j*-го астероида в *i*-й УТ на плоскость орбиты КАП:

$$\cos\theta_1(\beta) = V_{Afji} / V_{ji};$$

9) расчет дополнительного угла бросания вектора предельного пригодного вектора скорости КАП:

$$\delta(\beta) = \arcsin(\Delta V_{rii} / V_{ii} \sin \beta);$$

10) определение угла бросания вектора предельного пригодного вектора скорости КАП:

$$\theta(\beta) = \theta_1(\beta) - \delta(\beta);$$

11) вычисление по известным начальным условиям $\langle r_{ji}, V_{ji}(\beta), \theta(\beta) \rangle$ плоскостных кеплеровских элементов орбиты КАП — $\langle a_{ji}(\beta), e_{ji}(\beta), \omega_{ji}(\beta) \rangle$, где $a_{ji}(\beta)$ определяется по формуле (4), $e_{ji}(\beta)$ — по формуле (5), $\omega_{ji}(\beta)$ — по формуле (6);

12) задание начального значения угла аргумента широты $u := u_0 = 0^\circ$;

13) определение модуля радиуса-вектораКАП на орбите, соответствующей $\beta = \beta_0 = 0^\circ$: $V_{ji}(0^\circ)$, r_{ji} , $\theta_1(0^\circ)$ по формуле (8);

14) вычисление модуля радиуса-вектора КАП на орбите, соответствующей $\beta = 180^\circ$: $V_{ii}(180^\circ)$, r_{ji} , $\theta_1(180^\circ)$ по формуле (8);

15) расчет модуля радиуса-вектора КАП — $r_{KA\Pi}(u;\beta)$ на орбите, соответствующей углам ии β по формуле (8);

16) оценивание эксцентрической аномалии УТ по формулам (10);

17) определение эксцентрической аномалии, соответствующей углу *и* по формулам (10);

18) вычисление времени движения КАП от точки с аргументом широты u до УТ по формуле (9);

19) расчет момента времени пролета КАП точек орбиты с аргументом широты \boldsymbol{u}

$$t(u;\beta) = t_{ii} + \Delta t(u);$$

20) перерасчет значения аргумента широты $u := u + \Delta u$; если $u \in [0^\circ, 360^\circ)$, переход на пункты 16 и 15 и накопление значений $r_{CY}(u;\beta)$, $t(u;\beta)$; если — нет, переход на пункт 21;

21) перерасчет значения угла $\beta \coloneqq \beta + \Delta\beta$; если $\beta \in [0^{\circ}, 360^{\circ})$, переход на пункт 6 и накопление значений $r_{CY}(u;\beta)$; если — нет, то переход на пункт 22;

22) определение радиусов наружной границы РА для определенных значений *u*:

$$r_H(u) = \min r_{KA\Pi}(u;\beta)$$

и соответствующих времен $t_H(u)$;

23) определение радиусов внутренней границы РА для определенных значений и:

$$r_B(u) = \max r_{KAII}(u;\beta)$$

и соответствующих времен $t_R(u)$.

6. Результаты оценивания пространственно-временных характеристик РА астероидов. Апробация предлагаемой модели была проведена для исходных данных, представленных в таблицах 6 и 7.

таблица б. исходные данные для проведения экспериментов							
ΔV_{omh} , км/с	a_j , км	e_{j}	$i_{KA\Pi}$, гр.				
4	7000	0	80				

Таблица 6. Исходные данные для проведения экспериментов

r_{ji} , км	φ_{ji} , гр	$t_{ji},{ m c}$	V_{ji} , км/с	$ heta_{ji}$, гр.	Δu , гр.	Δeta , гр
7000	10	200	7,54605327	0	30	30

Порядок проведения вычислительных экспериментов состоял в однократном получении указанных в пунктах 1-8 величин и вычислении величин указанных в пунктах 10-27 при двух цикловом варьировании величинами углов β и и в указанных выше диапазонах с

заданными шагами (внешний цикло по углу β , внутренний по углу u). С учетом того, что β и и могут изменяться непрерывно в указанных диапазонах для зависимостей $r_H(u)$ и $r_B(u)$, $t_H(u)$ и $t_B(u)$ соответствующие графики были построены как огибающие линии, проходящие через полученные в расчетах и приведенные в таблицах точки значений $r_{out}(u; \beta)$.

Результаты расчетов величин модулей радиусов-векторов КАП при $\beta = 0^{\circ}$ и $\beta = 180^{\circ}$ приведены в таблице 8 во 2 и 8 столбцах. В этой же таблице для различных значений аргумента широты — $u = 0^{\circ}(30^{\circ})360^{\circ}$ представлены значения $r_{KAII}(u;\beta)$ при $\beta = 0^{\circ}(30^{\circ})150^{\circ}$ (столбцы 3-7).

Полученные результаты сведены в графики на рисунках 6, 7.

На рисунке ба приведены графики для $\beta = 0^{\circ}(30^{\circ})90^{\circ}$ и для $\beta = 0^{\circ}$, $\beta = 180^{\circ}$, а на рисунке 65 — для $r_B(u)$ и $r_H(u)$.

На рисунке 7а приведены графики для $\beta = 120^{\circ}(30^{\circ})180^{\circ}$ и для $\beta = 0^{\circ}$, $\beta = 180^{\circ}$, а на рисунке 76 — для $r_B(u)$ и $r_H(u)$.

, гра	$r_{KA\Pi}(u;0^\circ)$	$r_{KA\Pi}(u;30^\circ)$	$r_{KA\Pi}(u;60^\circ)$	$r_{KA\Pi}(u;90^\circ)$	$r_{KA\Pi}(u;120^\circ)$	$r_{KA\Pi}(u;150^\circ)$	$r_{KA\Pi}(u;180^\circ)$
~ I	КМ	КМ	KM	KM	КМ	КМ	КМ
0	7000	6872,683	6721,607	6596,361	6532,261	6590,084	7000
30	7295,011	7441,268	7689,113	7769,653	7533,058	6950,923	5657,871
60	8244,263	8631,117	8980,556	8423,844	6899,894	5244,177	3712,944
90	10026,49	10538,51	10237,69	8045,619	5365,757	3575,733	2526,535
120	12791,79	12971	10787,78	6946,743	4065,754	2584,309	1914,719
150	16027,79	14871,4	10230,81	5799,596	3249,579	2066,956	1626,405
180	17663,33	14711,5	8971,381	4948,483	2815,787	1837,326	1541,448
210	16027,79	12643,52	7681,347	4444,938	2663,268	1811,114	1626,405
240	12791,79	10244,04	6716,465	4255,858	2752,568	1978,926	1914,719
270	10026,49	8432,586	6151,527	4359,395	3106,943	2401,829	2526,535
300	8244,263	7332,317	5968,652	4768,068	3812,865	3235,601	3712,944
330	7295,011	6838,333	6154,016	5517,087	4987,665	4712,335	5657,871
360	7000	6872,683	6721,607	6596,361	6532,261	6590,084	7000

Таблица 8. Результаты исследования зависимости величины $r_{KA\Pi}(u;\beta)$ от u

Результаты расчетов величин моделей радиусов-векторов КАП при $u = 0^{\circ}(30^{\circ})360^{\circ}$ и $\beta = 210^{\circ}(30^{\circ})330^{\circ}$ приведены в таблице 9 (столбцы 2-6). В этой же таблице для различных значений аргумента широты — $u = 0^{\circ}(30^{\circ})360^{\circ}$ представлены значения $r_H(u)$ и $r_R(u)$ (столбцы 7, 8).

Рис. 6. Графики зависимостей от u : a) $r_{KAII}(u;\beta)$; б) $r_B(u)$ И $r_H(u)$

Рис. 7. Графики зависимостей от u : a) $r_{KAII}(u; \beta); б$) $r_B(u)$ и $r_H(u)$

На рисунке 8а приведены графики для $\beta = 210^{\circ}(30^{\circ})270^{\circ}$ и для $\beta = 0^{\circ}$, $\beta = 180^{\circ}$, а на рисунке 8б — для $\max r_{KAII}(u;\beta)$ и min $r_{KAII}(u;\beta)$.

			B	<i>,</i>			
u,	$r_{KA\Pi}(u;210^\circ),$	$r_{KA\Pi}(u;240^\circ),$	$r_{KA\Pi}(u;270^\circ),$	$r_{KA\Pi}(u;300^\circ),$	$r_{KA\Pi}(u;330^\circ),$	$r_B(u),$	$r_{H}(u),$
град	КМ	KM	KM	КМ	КМ	КМ	КМ
0	6590,084	6532,261	6596,361	6721,607	6872,683	7026,915	6532,261
30	6950,923	7533,058	7769,653	7689,113	7441,268	7769,653	5657,871
60	5244,177	6899,894	8423,844	8980,556	8631,117	8980,556	3712,944
90	3575,733	5365,757	8045,619	10237,69	10538,51	10538,51	2526,535
120	2584,309	4065,754	6946,743	10787,78	12971	12971	1914,719
150	2066,956	3249,579	5799,596	10230,81	14871,4	16027,79	1626,405
180	1837,326	2815,787	4948,483	8971,381	14711,5	17663,33	1541,448
210	1811,114	2663,268	4444,938	7681,347	12643,52	16823,12	1626,405
240	1978,926	2752,568	4255,858	6716,465	10244,04	13791,97	1914,719
270	2401,829	3106,943	4359,395	6151,527	8432,586	10767,95	2401,829
300	3235,601	3812,865	4768,068	5968,652	7332,317	8690,169	3235,601
330	4712,335	4987,665	5517,087	6154,016	6838,333	7509,226	4712,335
360	6590,084	6532,261	6596,361	6721,607	6872,683	7026,915	6532,261

Таблица 9. Результаты исследования зависимостей величин $r_{KAII}(u;\beta)$, $r_H(u)$, $r_P(u)$ от u

Полученные результаты сведены в графики на рисунках 8-10.

Рис. 8. Графики зависимостей от u: а) $r_{KAII}(u;\beta)$; б) $r_B(u)$ и $r_H(u)$

На рисунке 9(а) приведены графики для $\beta = 300^{\circ}(30^{\circ})360^{\circ}$ и для $\beta = 0^{\circ}$, $\beta = 180^{\circ}$, а на рисунке 9(б) — для $\max r_{KA\Pi}(u;\beta)$ и min $r_{KA\Pi}(u;\beta)$.

На рисунке 10 представлены графики зависимостей максимального радиуса РА и минимального радиуса РА в функции от аргумента широты.

Результаты расчетов времен, необходимых для пролета границ РА при $u = 0^{\circ}(30^{\circ})360^{\circ}$ и $\beta = 30^{\circ}(30^{\circ})180^{\circ}$, приведены в таблице 10.

и,	$t(u;30^\circ),$	$t(u;60^\circ),$	$t(u;90^{\circ}),$	$t(u;120^\circ),$	$t(u;150^\circ),$	$t(u;180^{\circ}),$			
гр.	с	с	с	с	с	с			
0	62,77918	51,70948	30,07894	-2,24299	-39,5597	-64,7661			
30	496,1395	539,1359	602,385	672,9495	716,975	703,8212			
60	1042,695	1194,83	1339,062	1387,911	1311,159	1174,099			
90	1822,6	2074,764	2102,84	1890,05	1608,096	1378,654			
120	3007,393	3137,876	2728,629	2180,921	1751,395	1475,661			
150	4698,252	4200,25	3175,464	2354,935	1833,271	1532,984			
180	6625,065	5078,65	3491,168	2474,595	1891,147	1575,659			
210	8253,396	5732,978	3731,811	2572,337	1941,759	1615,335			
240	9374,242	6219,521	3938,198	2667,851	1996,332	1661,255			
270	10114,02	6607,392	4140,543	2779,559	2069,034	1727,811			
300	10639,8	6951,314	4367,707	2935,234	2189,061	1849,491			
330	11064,53	7295,378	4656,542	3187,861	2428,828	2120,676			
360	11462,2	7683,711	5059,117	3627,715	2930,957	2712,792			

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ И ПРИКЛАДНАЯ МАТЕМАТИКА

Таблица 10. Результаты исследования зависимости величины $t(u;\beta)$ от u

На рисунке 11а приведены графики зависимостей t(u; β) для $\beta = 30^{\circ}(30^{\circ})90^{\circ}$ и, а на рисунке 116 — для $\beta = 120^{\circ}(30^{\circ})180^{\circ}$.

Рис. 11. Графики зависимостей $t(u;\beta)$ от u:a) для $\beta = 30^{\circ}(30^{\circ})90^{\circ}$; б) для $\beta = 120^{\circ}(30^{\circ})180^{\circ}$

Результаты расчетов времен, необходимых для пролета границ РА при $u = 0^{\circ}(30^{\circ})360^{\circ}$ и $\beta = 210^{\circ}(30^{\circ})270^{\circ}$, $\beta = 300^{\circ}(30^{\circ})360^{\circ}$ приведены в таблице 11.

<i>и.</i> гр	$t(u;210^\circ),$	$t(u;240^\circ),$	$t(u;270^\circ),$	$t(u;300^\circ),$	$t(u; 330^{\circ}),$	$t(u;360^\circ),$
,	с	с	с	с	с	с
0	-39,5597	-2,24299	30,07894	51,70948	62,77918	135,5967
30	716,975	672,9495	602,385	539,1359	496,1395	474,3378
60	1311,159	1387,911	1339,062	1194,83	1042,695	934,6346
90	1608,096	1890,05	2102,84	2074,764	1822,6	1542,287
120	1751,395	2180,921	2728,629	3137,876	3007,393	2464,613
150	1833,271	2354,935	3175,464	4200,25	4698,252	3967,229
180	1891,147	2474,595	3491,168	5078,65	6625,065	6216,622
210	1941,759	2572,337	3731,811	5732,978	8253,396	8737,53
240	1996,332	2667,851	3938,198	6219,521	9374,242	10706,83
270	2069,034	2779,559	4140,543	6607,392	10114,02	11949,14
300	2189,061	2935,234	4367,707	6951,314	10639,8	12722,79
330	2428,828	3187,861	4656,542	7295,378	11064,53	13258,37
360	2930,957	3627,715	5059,117	7683,711	11462,2	13689,82

Таблица 11. Результаты исследования зависимости величины $t(u; \beta)$ от u

На рисунке 12а приведены графики зависимостей t(u; β) для $\beta = 210^{\circ}(30^{\circ})270^{\circ}$, а на рисунке 126 — для $\beta = 300^{\circ}(30^{\circ})360^{\circ}$.

Рис. 12. Графики зависимостей $t(u;\beta)$ от u:a) для $\beta = 210^{\circ}(30^{\circ})270^{\circ}$; 6) для $\beta = 300^{\circ}(30^{\circ})360^{\circ}$

В таблице 12 сведены данные по РА астероидов в УТ, полученные при принятых исходных данных, как пространственновременных областях для различных значений $u = 0^{\circ}(30^{\circ})360^{\circ}$.

временных характериеник і Укаетерондов от и				
и, гр.	радиус, км	радиус, км	время, с	время, с
	максимум	минимум	максимум	минимум
0	7026,915	6532,261	135,5967	-64,7661
30	7769,653	5657,871	716,975	496,1395
60	8980,556	3712,944	1387,911	1042,695
90	10538,51	2526,535	2102,84	1378,654
120	12971	1914,719	3137,876	1475,661
150	16027,79	1626,405	4698,252	1532,984
180	17663,33	1541,448	6625,065	1575,659
210	16823,12	1578,566	8737,53	1615,335
240	13791,97	1790,873	10706,83	1661,255
270	10767,95	2274,165	11949,14	1727,811
300	8690,169	3233,235	12722,79	1849,491
330	7509,226	4712,335	13258,37	2120,676
360	7026,915	6532,261	13689,82	2712,792

Таблица 12. Результаты исследования зависимостей пространственновременных характеристик РА астероидов от *u*

Полученные результаты позволили разработать схему оценивания параметров РА от и и высоты над поверхностью Земли — $H_{\kappa p}$, представленную на рисунке 13.

Рис. 13. Схема оценивания параметров РА от
и и высоты над поверхностью Земли — $H_{\mbox{\tiny KP}}$

Особенностью графиков на рисунке 13 является то, что диапазон изменения времен и диапазон изменения времен по оси ординат совпадают.

Представленные на рисунке 13 графики позволяют оценить параметры РА не только в зависимости от различных значений аргумента широты, но и от радиуса (высоты над поверхностью Земли) по следующей схеме:

по заданной высоте круговой орбиты КАП – Н_{кр} определяются точки (как правило две) пересечения соответствующей горизонтальной линии с графиком зависимости максимального радиуса РА от аргумента широты — точки «1» и «2»;

2) проектирование этих точек на ось абцисс и определение соответствующих значений аргументов широт — u_{ex} и u_{oblx} — точки «3» и «4»;

 определение точек пересечения проектирующих на ось абцисс с графиками зависимостей времени существования РА — точки «5» и «6»;

4) определение абцисс этих точек — соответствующих времен t_{ex} и t_{ebx} — точки «7» и «8».

4. Заключение. Приведенные в статье результаты позволяют сделать вывод о том, что размеры РА колеблются в значительных диапазонах для околоземных орбит КАП даже при незначительных диапазонах относительных скоростей КАП и астероидов, что позволяет прогнозировать достаточно широкий диапазон параметров рубежей применения этих КА. При этом предлагаемый в статье подход к оцениванию пространственно-временных характеристик РА астероидов позволяет получать их независимо от параметров движения КАП, что существенно облегчает последующий поиск параметров рубежей применения этих КА. Кроме того, разработанная аналитическая модель оценивания пространственно-временных характеристик РА астероидов позволяет определять аналогичные характеристик РА при ограничениях на относительное расстояние между астероидом и КАП в момент его применения.

Литература

- Ross I.M., Park S.Y., Porter S.E. Gravitational Effects of Earth in Optimizing Delta-V for Deflecting Earth-Crossing Asteroids // Journal of Spacecraft and Rockets. 2001. vol. 38. no. 5. pp. 759–764.
- Asteroid Impact & Deflection Assessment (AIDA) collaboration. URL: https://www.esa.int/Safety_Security/Hera/Asteroid_Impact_Deflection_Assessment_ AIDA_collaboration (дата обращения: 15.08.2019).
- 3. *Dwayne A*. Giant bombs on giant rockets: Project Icarus // The SpaceReview. 2004.
- Asteroid deflection mission seeks smashing ideas. URL: http://www.esa.int/Enabling_Support/Operations/Asteroid_deflection_mission_seeks_ smashing_ideas (дата обращения: 15.08.2019).

1485

- Powell C.S. Developing Early Warning Systems for Killer Asteroids // Discover. 2013. pp. 60–61.
- Harper P. Earth will be hit by asteroid with 100% certainty space experts warn // Daily Star. 2018.
- Homer A. Earth Will Be Hit By An Asteroid With 100 Percent Certainty, Says Space-Watching Group B612 // Inquisitr. 2018.
- Stanley-Becker I. Stephen Hawking feared race of 'superhumans' able to manipulate their own DNA. URL: https://www.washingtonpost.com/news/morningmix/wp/2018/10/15/stephen-hawking-feared-race-of-superhumans-able-tomanipulate-their-own-dna/ (дата обращения: 15.08.2019).
- Константиновская Л.В. Прогноз и предотвращение кометно-астероидной опасности. URL: http://www.astronom2000.info/different/pipao/ (дата обращения: 11.09.2013).
- 10. Угрозы из космоса // Популярная Механика. 2010. № 9(95). С. 31–46.
- Назиров Р.Р., Эйсмонт Н.А. Гравитационные маневры как способ направить малые астероиды на траекторию встречи с опасными околоземными объектами // Космические исследования. 2010. Т. 48. № 5. С. 1–6.
- Седых Р. Угрозы из космоса растут // Военное обозрение. 2013. URL: http://vpknews.ru/ (дата обращения: 21.06.2017).
- Колин К.К. Глобальные угрозы развитию цивилизации в XXI веке // Стратегические приоритеты. 2014. № 1. С. 6–30.
- 14. Бакланов О. и др. От астероидно-космической опасности Землю защитит «Цитадель» // Воздушно-космическая сфера. 2017. № 1. С. 90–95.
- 15. *Billings L.* Words matter: A call for responsible communication about asteroid impact hazards and plans for planetary defense // Space Policy. 2015. vol. 33. pp. 8–12.
- Wall M. A Killer Asteroid Is Coming We Don't Know When (So Let's Be Ready), Bill Nye Says. URL: https://www.space.com/killer-asteroids-warning-bill-nye.html (дата обращения: 15.08.2019).
- 17. Johns H.U. Asteroids are stronger, harder to destroy than previously thought. URL: https://www.sciencedaily.com/releases/2019/03/190304095926.htm (дата обращения: 15.08.2019).
- Charles E.M., Ramesh K.T., Richardson D.C. A new hybrid framework for simulating hypervelocity asteroid impacts and gravitational reaccumulation // Icarus. 2019. vol. 321. pp. 1013–1025.
- Dillow C. How it Would Work: Destroying an Incoming Killer Asteroid With a Nuclear Blast // Bonnier. 2012. URL: https://www.flightglobal.com/news/articles/ nasa-plansarmageddon-spacecraft-to-blast-asteroid-215924 (дата обращения: 15.08.2019).
- Ekpo S.C., George D. A system engineering analysis of highly adaptive small satellites // IEEE Systems Journal. 2012. vol. 7. no. 4. pp. 642–648.
- Zhao L., Jia Y. Decentralized adaptive attitude synchronization control for spacecraft formation using nonsingular fast terminal sliding mode // Nonlineat Dyan. 2014. vol. 78. no. 4. pp. 2779–2794.
- 22. Du H., Li S. Attitude synchronization control for a group of flexible spacecraft // Automatica. 2014. vol. 50. no. 2. pp. 646–651.
- Lan Q., Yang J., Guo L. Finitic-time soft landing on asteroids using nonsingular terminal sliding mode control // Transactions of the Institute of Measurement and Control. 2014. vol. 36. no. 2. pp. 216–223.
- Zhan L., Lia Q., Chen G., Sun H. Pre-impact trajectory planning for minimizing base attitude disturbance in spave manipulator systems for a capture task // Chinese Journal of Aeronautics. 2015. vol. 28. no. 4. pp. 1199–1208.
- Zou A.M. Finite-time output feedback attitude tracking control for rigid spacecraft // IEEE Transactions on Control Systems Technology. 2014. vol. 22. no. 1. pp. 338–345.
- 1486 Труды СПИИРАН. 2019. Том 18 № 6. ISSN 2078-9181 (печ.) ISSN 2078-9599 (онлайн) www.proceedings.spiiras.nw.ru

MATHEMATICAL MODELING, NUMERICAL METHODS

- Zhao I., Jia Y. Finite-time attitude stabilization for a class of stochastic spacecraft systems // IET Control Theory & Applications. 2015. vol. 9. no. 8. pp. 1320–1327.
- 27. Шустов Б.М., Рыхлова Л.В. Астероидно-кометная опасность: вчера, сегодня, завтра // М.: Физматлит. 2010. 384 с.
- Минаков Е.П., Соколов Б.В. Исследование характеристик размещения и вариантов применения моноблочных стационарных наземных средств поражения астероидов // Труды СПИИРАН. 2016. Вып. 5(48). С. 181–196.
- Минаков Е.П., Соколов Б.В., Шалдаев С.Е. Исследование характеристик и вариантов применения окололунной системы поражения астероидов // Труды СПИИРАН. 2017. Вып. 5(54). С. 106–129.
- Баринов К.Н., Бурдаев М.Н., Мамон П.А. Динамика и принципы построения орбитальных систем космических аппаратов // М.: Машиностроение. 1975. 232 с.
- Ivanov D., Dolgui A., Sokolov B., Werner F. Schedule robustness analysis with the help of attainable sets in continuous flow problem under capacity disruptions // International Journal of Production Research. 2016. vol. 54. no. 1. pp. 3397–3413.
- Ivanov D., Dolgui A., Sokolov B. Robust dynamic schedule coordination control in the supply chain // Computers & Industrial Engineering. 2016. vol. 94. pp. 18–31.

Минаков Евгений Петрович — д-р техн. наук, профессор, профессор, кафедра оценивания эффективности, Военно-космическая академия им. А.Ф. Можайского (ВКА им. А.Ф. Можайского). Область научных интересов: системный анализ, баллистическое обеспечение полетов космических аппаратов, эффективность применения космических комплексов и систем. Число научных публикаций — 150. ер.minakov12345@mail.ru; Ждановская, 13, 197082, Санкт-Петербург, Российская Федерация; р.т.: +7 (812) 552-6341.

Соколов Борис Владимирович — д-р техн. наук, профессор, Заслуженный деятель науки РФ, главный научный сотрудиник, лаборатория информационных технологий в системном анализе и моделировании, Федеральное государственное бюджетное учреждение науки Санкт-Петербургский институт информатики и автоматизации Российской академии наук. Область научных интересов: разработка научных основ теории управления структурной динамикой сложных организационно-технических систем. Число научных публикаций — 650. sokol@iias.spb.su; 14 линия В.О., 39, 199178, Санкт-Петербург, Российская Федерация; р.т.: +7(812) 328–01–03; факс: +7(812)328-44-50.

Шалдаев Сергей Евгеньевич — д-р техн. наук, доцент, начальник управления, Военнокосмическая академия им. А.Ф. Можайского (ВКА им. А.Ф. Можайского). Область научных интересов: радиолокация, радионавигация, построение и испытание сложных технических систем. Число научных публикаций — 100. 100.shs99@yandex.ru; ул. Ждановская, 13, 197082, Санкт-Петербург, Российская Федерация; р.т.: +7(812) 347-95-59.

Александров Максим Андреевич — канд. техн. наук, доцент, преподаватель, Военнокосмическая академия им. А.Ф. Можайского (ВКА им. А.Ф. Можайского). Область научных интересов: моделирование применения космических комплексов и систем. Число научных публикаций — 15. maks.aleksandrov.vka@mail.ru; ул. Ждановская, 13, 197082, Санкт-Петербург, Российская Федерация; р.т.: +7 (812) 552-6341.

Поддержка исследований. Исследование выполнено в рамках бюджетной темы №№0073-2019-0004 и Госзадания Министерства образования и науки РФ №2.3135.2017/4.6.

DOI 10.15622/sp.2019.18.6.1462-1490

E.P. MINAKOV, B.V. SOKOLOV, S.E. SHALDAEV, M.A. ALEKSANDROV CALCULATION AND RESEARCH OF SPACE-TEMPORAL CHARACTERISTICS OF ATTACK ABRASES OF ASTEROIDS BY ORBITAL MEANS

Minakov E.P., Sokolov B.V., Shaldaev S.E., Aleksandrov M.A. Calculation and Research of Space-Temporal Characteristics of Attack Abrases of Asteroids by Orbital Means.

Abstract. A development of work to combat the asteroid hazard requires construction and study of areas of outer space in which moving spacecraft-interceptors can affect asteroids. In this paper, such areas are called attack lines, the spatio-temporal characteristics of which depend on the parameters of the asteroid's orbits and the phase coordinates of the nodal points. At these points the trajectory intersects the asteroids and the orbital planes of the spacecraft-interceptors. In the case of the impact of spacecraft-interceptors on asteroids at nodal points, the study of the spatio-temporal characteristics of the lines of attack, taking into account restrictions on the relative speeds between asteroids and spacecraft-interceptors, is of particular importance. Building and analyzing the corresponding zones of reverse reach are suggested.

In the article, the developed models include a simulation model, using which random angles between the projections of the velocity vectors of asteroids on a plane of the orbits of spacecraftinterceptors and the current directions on the hodographs of their velocity vectors at nodal points, as well as an analytical model for estimating the spatio-temporal characteristics of boundaries are simulated attacks of asteroids, including: the radii of their external and internal boundaries for certain values of the latitude arguments and arrival time of spacecraft-interceptors at modal points.

Testing these models and the corresponding characteristics of the attack lines were carries out during computational experiments on two cyclic modeling of the angles between the projections of the velocity vectors of asteroids on the plane of the orbits of interceptor spacecraft and the current directions on the hodographs of their velocity vectors at nodal points. The results obtained made it possible to verify and validate the developed models, on the basis of which a conclusion was drawn about the required degree of their applicability. In the paper also a procedure for estimating the parameters of attack lines, depending on the values of the arguments of the latitudes of interceptor spacecraft and their altitudes above the Earth's surface is proposed. At the same time, an approach is substantiated for estimating the spatio-temporal characteristics of the boundaries of attack of asteroids by spacecraft-interceptors for any inside the planar parameters of their orbits.

Keywords: Asteroid Danger, Spacecraft Interceptor, Detachable Part, Anchor Point, Line of Attack, Space-Time Characteristics.

Minakov Evgeniy Petrovich — Ph.D., Dr.Sci., Professor, Professor, Department of Effectiveness Evaluation, Mozhaisky Military Space Academy. Research interests: system analysis, provision of ballistic spacecraft, effectiveness of space complexes and systems. The number of publications — 150. ep.minakov12345@mail.ru; 13, Gdanovskaya, 197082, St. Petersburg, Russian Federation; office phone: +7 (812) 552-6341.

Sokolov Boris Vladimirovich — Ph.D., Dr.Sci., Professor, Honored scientist of Russian Federation, Chief Reseatrexher, Laboratory of Information Technologies in Systems Analysis and Modeling, St.Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences. Research interests: development of research fundamentals for the control theory by structural dynamics of complex organizational-technical systems. The number of publications — 650. sokol@iias.spb.su; 39, 14th line V.O., 199178, St.Petersburg, Russian Federation; office phone: +7(812) 328–01–03; fax: +7(812)328-44-50.

MATHEMATICAL MODELING, NUMERICAL METHODS

Shaldaev Sergey Evgenjevich — Ph.D., Dr.Sci., Associate Professor, Head of Department, Mozhaisky Military Space Academy. Research interests: radiolocation, radio navigation, construction and testing of complex technical systems. The number of publications — 100. 100.shs99@yandex.ru; 13, Zhdanovskaya str., 197082, St. Petersburg, Russian Federation; office phone: +7(812) 347-95-59.

Aleksandrov Maksim Andreevich — Ph.D., Associate Professor, Lecturer, Mozhaisky Military Space Academy. Research interests: modeling the use of space systems and systems. The number of publications — 15. maks.aleksandrov.vka@mail.ru; 13, Zhdanovskaya str., 197082, St. Petersburg, Russian Federation; office phone: +7 (812) 552-6341.

Acknowledgements. This research is supported by state research 0073–2019–0004 and state order of the Ministry of Education and Science of the Russian Federation №2.3135.2017/4.6.

References

- Ross I.M., Park S.Y., Porter S.E. Gravitational Effects of Earth in Optimizing Delta-V for Deflecting Earth-Crossing Asteroids. *Journal of Spacecraft and Rockets*. 2001. vol. 38. no. 5. pp. 759–764.
- Asteroid Impact & Deflection Assessment (AIDA) collaboration. Available at: https://www.esa.int/Safety_Security/Hera/Asteroid_Impact_Deflection_Assessment_ AIDA collaboration (accessed: 15.08.2019).
- 3. Dwayne A. Giant bombs on giant rockets: Project Icarus. The Space Review. 2004.
- Asteroid deflection mission seeks smashing ideas. Available at: http://www.esa.int/Enabling_Support/Operations/Asteroid_deflection_mission_seeks_ smashing ideas (accessed: 15.08.2019).
- Powell C.S. Developing Early Warning Systems for Killer Asteroids. *Discover*. 2013. pp. 60–61.
- Harper P. Earth will be hit by asteroid with 100% certainty space experts warn. Daily Star. 2018.
- Homer A. Earth Will Be Hit By An Asteroid With 100 Percent Certainty, Says Space-Watching Group B612. Inquisitr. 2018.
- Stanley-Becker I. Stephen Hawking feared race of 'superhumans' able to manipulate their own DNA. Available at: https://www.washingtonpost.com/news/morningmix/wp/2018/10/15/stephen-hawking-feared-race-of-superhumans-able-tomanipulate-their-own-dna/ (accessed: 15.08.2019).
- Konstantinovskaya L.V. Prognoz I predotvrashchenie kometno-asteroidnoj opasnosti [Forecast and prevention of comet-asteroid hazard]. Available at: http://www.astronom2000.info/different/pipao/ (accessed: 11.09.2013). (In Russ.).
- 10. [Threats from spase]. Populyarnaya Mekhanika Popular Mechanics. 2010. vol. 9(95). pp. 31–46. (In Russ.).
- Nazirov R.R., E'jsmont N.A. [Gravitational maneuvers as a way to direct small asteroids to a meetings trajectory with dangerous undegraund objects]. Kosmicheskie issledovaniya – Cosmic Research. 2010. vol. 48. no. 5. pp. 1–6. (In Russ.).
- 12. Sedyh R. [Treats from space are growing]. *Voennoe obozrenie Military Watch*. 2013. Available at: http://vpk-news.ru/ (accessed: 21.06.2017). (In Russ.).
- Kolin K.K. [Global threats of civilization development in the XXI century]. Strategicheskie prioritety – Strategic Priorities. 2014. vol. 1. pp. 6–30. (In Russ.).
- Baklanov O. et al. [From asteroid and space danger The Earth will be protected by the Citadel]. Vozdushno-kosmicheskaya sfera – Aerospace Sphere Journal. 2017. vol. 1. pp. 90–95. (In Russ.).
- 15. Billings L. Words matter: A call for responsible communication about asteroid impact hazards and plans for planetary defense. *Space Policy*. 2015. vol. 33. pp. 8–12.

- Wall M. A Killer Asteroid Is Coming We Don't Know When (So Let's Be Ready), Bill Nye Says. Available at: https://www.space.com/killer-asteroids-warning-billnye.html (accessed: 15.08.2019).
- Johns H.U. Asteroids are stronger, harder to destroy than previously thought. Available at: https://www.sciencedaily.com/releases/2019/03/190304095926.htm (accessed: 15.08.2019).
- Charles E.M., Ramesh K.T., Richardson D.C. A new hybrid framework for simulating hypervelocity asteroid impacts and gravitational reaccumulation. *Icarus.* 2019. vol. 321. pp. 1013–1025.
- Dillow C. How it Would Work: Destroying an Incoming Killer Asteroid With a Nuclear Blast // Bonnier. 2012. Available at: https://www.flightglobal.com/news/articles/ nasaplans-armageddon-spacecraft-to-blast-asteroid-215924 (accessed: 15.08.2019).
- Ekpo S.C., George D. A system engineering analysis of highly adaptive small satellites. *IEEE Systems Journal*. 2012. vol. 7. no. 4. pp. 642–648.
- Zhao L., Jia Y. Decentralized adaptive attitude synchronization control for spacecraft formation using nonsingular fast terminal sliding mode. *Nonlinear Dynamics*. 2014. vol. 78. no. 4. pp. 2779–2794.
- 22. Du H., Li S. Attitude synchronization control for a group of flexible spacecraft. *Automatica*. 2014. vol. 50. no. 2. pp. 646–651.
- 23. Lan Q., Yang J., Guo L. Finitic-time soft landing on asteroids using nonsingular terminal sliding mode control. *Transactions of the Institute of Measurement and Control.* 2014. vol. 36. no. 2. pp. 216–223.
- Zhan L., Lia Q., Chen G., Sun H. Pre-impact trajectory planning for minimizing base attitude disturbance in spave manipulator systems for a capture task. *Chinese Journal* of Aeronautics. 2015. vol. 28. no. 4. pp. 1199–1208.
- Zou A.M. Finite-time output feedback attitude tracking control for rigid spacecraft. IEEE Transactions on Control Systems Technology. 2014. vol. 22. no. 1. pp. 338–345.
- Zhao I., Jia Y. Finite-time attitude stabilization for a class of stochastic spacecraft systems. *IET Control Theory & Applications*. 2015. vol. 9. no. 8. pp. 1320–1327.
- Shustov B.M., Rikhlovoy L.V. Asteroidno-kometnajaopasnost: vchera, segodnja, zavtra [Asteroid-cometdanger: yesterday, today, tomorrow]. M.: Phyznatlit. 2010. 384 p. (In Russ.).
- Minakov E.P., Sokolov B.V. [Investigation of the location and application of monoblock stationary ground-based asteroid weapons]. *Trudy SPIIRAN — SPIIRAS Proceedings*. 2016. vol. 5(48). pp. 181–196. (In Russ.).
- Minakov E.P., Sokolov B.V., Shaldaev S.E. [Investigation of the characteristics and applications of the circumlunar system of asteroid damage]. *Trudy SPIIRAN — SPIIRAS Proceedings*. 2017. vol. 5(54). pp. 106–129. (In Russ.).
- Barinov K.N., Burdaev M.N., Mamon P.A. Dinamika i principy postroeniya orbital'nyh sistem kosmicheskih apparatov [Dynamics and principles of construction of spacecraft orbital systems]. M.: Mashinostroenie. 2013. 90 p. (In Russ.).
- Ivanov D., Dolgui A., Sokolov B., Werner F. Schedule robustness analysis with the help of attainable sets in continuous flow problem under capacity disruptions. *International Journal of Production Research*. 2016. vol. 54. no. 1. pp. 3397–3413.
- Ivanov D., Dolgui A., Sokolov B. Robust dynamic schedule coordination control in the supply chain. Computers & Industrial Engineering. 2016. vol. 94. pp. 18–31.