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Introduction

According to the random coding theorem [1]
there exists a block code of length N and rate R,
R=N11 logo,M, M is the number of code words,
such that the error probability of the maximum
likelihood (ML) decoding is upper bounded as
P, < expy(—N(E (R) — o(N))), where exp,=2*, and
E (R) the exponent of the random coding bound.
The function E (R) > 0, if R < C, where C is the
channel capacity. Another quantity characteri-
zing the channel is the computational cut-off rate
R,. The value R, can be found from the function
E (R) as R, = E (0). The values of E (R) and R, are
calculated by averaging over a code ensemble and
optimizing over a distribution on this ensemble.
Generally, the exact computation of the function
E (R) is a difficult problem which can only be solved
for some channel models. However, sometimes it is
possible to obtain a bound for the function E (R) for
the decoding algorithm used a decoding function y
which differs from the ML decoding function (mis-
matched decoding; see, for example, [2—6] and ref-
erences wherein). In this case it is possible to obtain
near-exact characteristics of the transmission reli-
ability. This approach is used in this paper.

For simplicity, we assume that the distribution
on the code ensemble corresponds to the independ-
ent uniformly distributed (i.u.d.) code symbols. In
this case we have the function E(R; y) < E (R) and
quantities Ry (y) < Ry, C*(y) < C (the asterisk in the

superscript hereafter means that the code symbols
are chosen as i. u. d. random variables).

We assume that the channel model is given by
the well known finite-state model [1]. For this mod-
el we present the derivation of the random coding
exponent for the decoding function which is in the
form of the product of the a posteriori probabilities
(APP) of segments of the channel input sequence
relative to the overlapped segments of the channel
output sequence. One of the main challenges of this
study was the choice of a suitable decoding function
enabling a good final result. With the usage of such
a decoding function the problem can be reduced
to the evaluation of the logarithm of a bilinear
form defined by a power of a nonnegative matrix.
Then we used a known technique based on the us-
age of the Perron — Frobenius theorem to obtain
the final result. Using this approach a new subop-
timal random coding bound which is applicable to
a wide class of the channel with memory has been
obtained. The discrete-time model with intersym-
bol interference, additive noise and fixed inputs
is one of the important examples of such chan-
nels [7].

Under these or similar conditions the maximum
achievable information rate for the finite-state
channel model has been estimated in [8—10] using a
simulation-based algorithm. Bounds on the compu-
tational cut-off rate R(f for the finite-state channel
models were studied, particularly, in [11-16]. Some
of the very first random coding bounds for chan-
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nels with memory were published in [17, 18]. In [18]
random coding bounds for the discrete additive fi-
nite-state channel were obtained for mismatched
decoding different from the ML decoding function,
and that publication gave a basic idea for this pa-
per. The main known results for the random coding
bounds for discrete-time channels with time-invar-
iant intersymbol interference (ISI) consist in evalu-
ation the value R for ML decoding and i. u. d. code
symbols. In [11], this task was solved for a particu-
lar case of the ISI channel with the length of inter-
ference equal to 1. More general cases of ISI were
studied in [12—16]. Therefore, one may say that for
channels with ISI it is known how to calculate the
value of R (the technique based on the Perron —
Frobenius theorem) and the value of maximum
achievable information rate C* (simulation-based
algorithm [9]). Taking these values into account let
us introduce function E, (R), as

o Ry —R, 0<R<Ry,,
Er(R):{ o-B 0<R=FR )
0, R>C .

Note that the function E: (R) in is not defined
for rates in the range Ry < R < C”. Let us denote
by E(R) the random coding exponent obtained for
the discrete-time ISI channel, ML decoding, and
a code ensemble with i. u. d. code symbols. Then,
for the values of R € [0, Ry1u{C* } the inequality
E (R) > E (R) is valid. Clearly, E (R)= E (R) in
the 1nterva1 0 < R<R,, where R,, is the crztzcal
rate, and in the point R =C" In this paper we in-
troduce a decoding function y with partial overlap-
ping which depends on two integer parameters W
and B, W > B > 0. With the use of this function we
obtain the random coding exponent E* (R; y) which
can be a good approximation of the function E (R)
if W, B— even for the those values of R for which
the function E, (R) is not defined.

This paper is the first part of a general study,
consisting of two parts, published separately. In the
second part of the work we intend to present a num-
ber of examples and their discussion.

Notation and Basic Equations

Let Py (y|x) be the transition probability of the
discrete- tlme channel; for the continuous-output
channel it is instead a probability density function
(p.d.f.); x € XV, where X be a discrete input chan-
nel alphabet and ¢, =| X | < ; y € YV, where Y is
the channel output alphabet and N is the length
of a block code. For the continuous channel output
Y =R. The set Y may also represent a quantized
version of the continuous channel outputs, i. e.
| Y| = ¢. In this study consider this case.

The notation Py|x(Y|X) will mainly be used when
vectors x and y have the equal lengths, e. g., N. For
subvectors, or segments of vectors, x and y the no-
tation x and y is used. The difference between them
is noted due to the use of ordinary and sans serif
font. This notation is context-dependent; in par-
ticular, the length of x and/or y can differ in the
various contexts.

To indicate a segment of an arbitrary vector z
we use the notation z¥ =(z (max(,a)) (max(l.a)+1)
Z(Min(®.L)y where L is length of the vector z.

Let P(x) be a distribution on the code ensemble,
where x = (xD, x@), ..., M), and p, (x() be a one-di-
mensional distribution giving the distribution of a
single code symbol, n =1, 2, ..., N.

We assume the decoding rule is given by
x =argmaxy y(y; x), where y(y; x) is a real-valued
positive decoding function, and the maximization
is performed over all code words.

Using standard techniques [1] one can obtain
the random coding bound P, < exp,(—NE (N, R, v)),
where P, is the block error probability; E (N, R, y)
is the generalized exponent of the random coding
bound defined as

E.(N, R, y) =max max max(Ey(N, v, p, A, pg)—pR),
Py 12p>0 250

where A, p are the optimization parameters; R is the
code rate, and (see also [5])

Ey(N, vy, p, A, py) =

) ‘%'OQZZpX )Py (¥ | )W (y: %) 7P
y X

p
x (pr )y (y; x’)xj : @

Hereafter log() denotes the binary logarithm.
The expression is an approximation to the exponent
of random coding for a channel with a continuous
output and the accuracy of this approximation in-
creases with increasing number of quantization
levels q.

Assigning y(y; x) = = Pylx (y|x) corresponds to ML
decoding; in this case the optimal value of the pa-
rameter A is equal to A = 1/(1 + p), and we get clas-
sical expression for the random coding exponent [1]

E, (N, R, py,) =E, (N, R)=

_maxmax(EO(N P, Px)—PR),
Px 12p20

where
1 1+p

Eo(N. p. px) =109 Y| 3 py(R0py (¥ 0177
y| x
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As N—w, there is an asymptotic generalized ran-
dom coding bound P, < expy(—-N(E(R; y) — o(N))),
where

By (R v) ~max max| max(Eo (v, p 7 py) R )
Py 12p>0\ 250

and

Eo(v, p, &, px) = lim Eq(N, v, p, &, py)-
N—x

If y(y; x) = py|x(y|x), then again the optimal value
of the parameter L is A = 1/(1 + p) and we get asymp-
totic expression for the asymptotic random coding
exponent for ML decoding [1]

E, (R, pyx) = E, (R) =max max (Eq (p, px) — pR),
Py 12p>0

where E(p, p,) =lim 5, Ey(N, p, py). It is known
[1] that E(R) > 0, if R < C, where C is the chan-
nel capacity, which can be found from the function

Ey(p, py) as

C = max 2Eo(P:Px)|
px 6p p:()

We assume that the code ensemble distribution
is given as py(x) :Hlepx (™), xe XV, and
p,(x)=1/q,, x € X, i. e. it corresponds to the i. u. d.
channel input. This assumption leads to loss of opti-
mality but simplifies further consideration. Under
these assumptions one can derive the suboptimal
exponent of the random coding bound in asymptotic
form

E,(R; y)= max[maxES v, p, x)—pR), ®)
12p>0\ A>0

where
Ey (v, p, 2)=(1+p)logq, —
a 1 _
= lim 10} 3" pyy (7 [0)w(y; )7 x
Nowo N v x

p
{zwy; x'>’~] . @

By analogy with the channel capacity C let us de-
fine the lower bound on maximum achievable code
rate C*(y) as

omaxEy (v, p, 1)

" (y)=—220 ‘ <C. (5)

op ‘
p=0

The value Ry (y)=max;.qEq(y, 1, 1) gives a

bound on the cut-off rate Ry =max, Ey(1, py); ev-

idently the inequalities R;(y) < Ry < R, are valid.
Similarly we can write the equations for func-
tion E (N, R) for the ML decoding as

E{(N, R)=max(Eg(N, p)-pR).  (6)
1>p>0
where

Ey(N, p)=(1+p)logq, —
1 1+p

1 1
—ﬁmgz Zpy|x(Y|x)1+p , (7
vy x

and the asymptotic random coding exponent
as E’(R)=lim, , E’(N, R) with bound on the
maximum achievable information rate

Rinax (V) =0BG (N, 9)/ 39| e (V) <C

Channel Model and Decoding Function

Let the channel transition probabilities be giv-
en as Py (y]%)=(Y Pyxs (¥, X, 8))/ Px(x), where
s =(s©, s, .. s™ _)isthesequence of the channel
states, s e S, S is a set of the channel states and
IS| < oo, Pyxs(¥> X, 8) is the simultaneous probability
of the vectors y, x and s. Note that

Zpyxs (v, x,8)

lex(y|X):SPT:

zpy|xs(Y|X- s)pxs (%, 8)
=5 =D Pyxs (X, 8) Py (1),

Px (%)

where py|xs(y|x, s) is the conditional probability of
the channel output for the fixed vectors x and s, and
ps|x(x|s) is a conditional probability of the channel
states for the given input vector x.

Let us assume that the channel is a probabilistic
finite-state machine, i. e.

N
Pyixs 1% 8) = [T pyjas 0™ [, 67Dy,

n=1

N
Py 1% = Dy (SO | Py 5 [ 2™, 5D,

n=1

where p () is an unconditional (stationary) distribu-
tion on the set of channel states; ps‘xs(s(”)|x(”), s(n-1)
is the conditional channel state transition probabil-
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ity. In addition, we assume that the input channel
symbol x(™ and the current channel state s*1 are
independent. Such a model is quite general enough
and has been widely used (see, for example, [8, 9]
and references wherein). An explanatory illustra-
tion is given in Fig. 1 [9].

Some particular cases of this model are:

1. State transitions not depending on the input
symbol (channel with freely evolving states) [9], i. e.
ps‘xs(s(")| x g1y = ps‘s(s(”)|s(”’1)). The Gilbert —
Elliot [19, 20] channel is a specific example of such
a model.

2. Deterministic state transitions (deterministic
finite state machine). In this case the state transi-
tion is given as

£
Pis (5 [ ), 5Dy 11, if s 5 s,

0, otherwise.

The ISI channel is an example of a channel in
this class.
The probabilities py‘x(y | x) can be represented as

Py IR =2 . > Y p(sV)x

ROBENEE N

N
’ (prlxs (y(n) |x(n)! S(nil))pSIxs (S(n) |x(”), S(nl))]’
n=1

or in the following form of matrix product proved
similarly to the derivation of [1, eq. (5.9.39)]:

N
Py (v [%) =Py [HP(y(”) | x(”))] 1", ®)

n=1
where

P(y | x) = [py|xs (y | X, s)pg‘xs (S' | X, S)] (9)

is a matrix of size|S| x |S[; p,=[p,(1), ..., P4(|S)]is the
vector of the unconditional state probabilities at
n=0,and 1=(1, ..., 1) is vector of 1’s of dimensions
1x|S|.

Let us choose the decoding function as the prod-
uct of APP of input segments of length 2B + 1 for
fixed output segments of length 2W +1, W >B >0
are integer parameters,

B Fig. 1. Finite-state channel transitions

N1 (2B+1)+B | _n(2B+1)+W
. n(2B+1)+ n(2B+1)+
vvix)= ] P"[Xn(23+1)73 | Yo2B1)-w J
n=0

and
N(B)=[(N-B)/(2B+1)]. (10)

The value N(B), defined in (10), gives the num-
ber of the code block segments, or subblocks, of the
length 2B + 1. As will be seen in the following, for
such a decoding function, it is possible to obtain
a good final result for the suboptimal random cod-
ing exponent.

Let us denote

E(n)=n(2B+1)+1. (11)

This value gives the position of the central ele-
ment of the nt? code block segment of length 2B + 1.
For equiprobable segments xlzgzgfg we can write the
expression for the decoding function y(y; x) in an-
other equivalent form

\V(y! X) - H py|x yk(n)7W |Xk(n),B ’ ( )
n=0

where py‘x(-|-) is the conditional probability for seg-
ments of different, in general, lengths 2W + 1 and
2B + 1. Note, that in general py‘x(-|-) #Dy, (). The dif-
ference in these values is emphasize(i by their in-
dex notation typed in Roman bold font and sans ser-
if bold font respectively.

The segments x’;%fg of length 2B+ 1 of the

input vector x do not overlap, but the segments
yi%f% of length 2W + 1 overlap on a segment of
length 2(W — B). The illustration for B=2, W =4,
2B+1=5,2W +1=9isshown in Fig. 2.

Let us note some specific cases of the decoding
function (12).

Case 1. If W=B=0, then N(B) =N, and the de-
coding function is

N-1 1 L N-1
w(y: %)= [T 2y (723 13 21) = TT oy (5712,
n=0 n=0

i. e. it is matched with the memoryless channel.

. segments of vector y of length
’ 2W+1=9

segments of vector x of length
2B+1=5

B Fig. 2. Positions of the subblocks in product (12)
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Case2.1f B=0and W>1, then N(B) = N, and the
decoding function is

ol 1w
vy x) =] Py\x(ygilfw ERIE
n=0

N-1 W
= H Dy (thW |x(n) )
n=0

and such decoding is equivalent to APP symbol
decoding in a window of the length 2W + 1, and it is
similar to windowed version of the Bahl — Cocke —
Jelinek — Raviv (BCJR) algorithm [21], (see e. g.
[22]).

Case 3. If W=B=N, then N(B) =1, and the de-
coding function is

. 14N | 1+N
v(y; X) = Py (yN 1=14%)

N | _N
and corresponds to the ML decoding.
It can be shown (see Appendix A) that the prob-

abilities pylx(y|x) on the right-hand side of can be
found for any y € Y2W+ and x € X2B+ 35

2w-B).. [ Lo
Py 10 =¢""Pp,| TT Pe?) |x

=1
W+B+1 , ; 2W+1 ; T
< TT PP T Po®)|1%, as)
=W -B+1 =W +B+2

where y), x) are components of the vectors y and
x respectively; P(y|x) is |S| x |S| matrix defined by
equation (9), and P(y) is matrix defined as the
sum

P(y)= Y P(y|x). (14)
xeX
Suboptimal Random Coding Exponent

Consider the sums in the right-hand part of the
equation (4). It can be shown (see Appendix B) that

Yy 0" =ayf™ )«

n=ny

X[ ﬁ Dy (YIZ%% }”)Jb(ykN(nzﬂ)—W)'
where

Di(yi )= Y pyyI0*, yeY?"

xeXZBJrl

n, is the least positive integer such that k(n;) —
— W 21, and n, is the greatest integer such that,
k(ng)+W <N, or according to the definition (11)

m =[W/@B+1)], ng=|(N-W-1)/@2B+1)]. (15)

We denote by a() and b(-) the non-essential (not
affecting the exponent of random coding) positive
factors. It is also shown in Appendix B that

Z‘4py|x (y | X)w(y; x) 7P = pSA(yf(nl—l)H/V ) y
X

g

k w. N T

X[ [1D: (yk%tW1 7“9)} B(yk(n2+l)—W)1 '

n=n,

where D,(y; Ap) is |S| x |S| matrix defined as
Dy(y; Ap) =

= > P B Ix)p (0P, @6)

x€X2B+1

y € Y2W+: A() u B() are inessential nonnegative
matrix multipliers of dimension |S| x |S|, and

2B+1
Pylx (y|x)= H P(y(l) |x(l)), erZB+1’ xe X2B+H an
=1

where the matrices P(|) are defined by the equation
(9). Note, that yi 511 in the right-hand part of (16)

is the middle part of the vector y having length 2B + 1.
Using these notations we get from (4) that

Ey(y, p, 1) =(+p)logg, -

_J\Ifi_r)noo %Iog ps%:(u(yf(nl—mw )X

Ul
k w. N T
[ [T p{viy . p)}v(yk(n2+1)_w) s
n=mn
where

U(y) =a(y)P A(y), yeYHmDW,

V(y)=B(y)b(y)P, yeYV FratDtWel. o (1g)

D(y; %, p) =Dy (y; VP Da(y; 1p), ye YW1, (20)

In general (see Appendix C), the sum over y on
the right-hand side of (16) can be written in the form

n.
3 [T D(vE 0. p)=FKG. o= G, (21)

Yy n=n
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where
K, p)=[K;; (A, p)]=
Ki1(% p) ‘e Kl 2B (A, p)
= (22)
Kq2(W—B) 1 . p) Kq2(W—B) ~2W-B) (n,p)

is a square block matrix of order |S|g2(W=B) built
of he blocks K, (%, p) of dimension |S|x |S| defined
as

D(y; A, p), W =2B+1;

> D(y; & p), W<2B+1 (23)

2B+1
Y2(W-B)+1

K, p)=

fori, j=1, ..., g2 W=B), The matrix D(y; A, p) in equations
(21) and (23) is defined in (20). The correspondence
of the indices i, j and the vector y in the expression

(23)isgivenas i <> yf(W_B ) and je y%%vle. In other
words, the components of the vectors yf(W_B ) and

je y%Ig:gl are the digits in g-ary representation of
the indices i and j respectively.

The matrices F and G on the right-hand side of
(21) are nonnegative matrix multipliers of dimen-
sion | S| x [S|g2W=B) and |S|q2"V~B) x |S].

With these definitions equation (18) can be re-
written as follows

Ey(y, p, 1) =(1+p)logq, -

1 _
—lim —log(fK(, p)2 *lg), 24
lim —log(fK (., ) " g 24)

where n,, n, are defined in equations (15) and
f=p,G; g=G1"T are inessential nonnegative vec-
tors. In what follows we use the following assertion.

Corollary from the Perron — Frobenius the-
orem [1, 23]. Let A be a nonnegative irreducible
square matrix, a and b be nonnegative vectors of
the corresponding dimensions, then

lim N tlogaAVb=1logr(A),

N—©

where r(A) is maximum eigenvalue (spectral radius)
of the matrix A.

Using this corollary and the definitions in (15)
we get from the equation (24) that, if the matrix
K(%, p) is irreducible, then

Eo(y, p, 1) =(1+p)logq, -
~ (2B+1)"tog r(&K(, p)), (25)

where r(K(A, p)) is maximum eigenvalue (spectral
radius) of the matrix K(, p). The similar approach
has been used many times in early publications such
as[1, 17, 18], and later, for example, in [12-16].

Let us consider the conditions for matrix K(A, p),
defined in (22), to be irreducible. Obviously for the
matrix K(A, p) to be irreducible it is sufficient that
each of its blocks Kij(k, p) is irreducible. Matrices
Kij(k, p) defined by the equation (23) are linear com-
binations of the matrices Py|x(Y|X) [see (16) and (17)].
Hence, for irreducibility of the matrix KL.]-()L, p) it is
sufficient that the matrices in (17) are irreducible.
This condition is satisfied if the matrices (9) are ir-
reducible. Irreducibility of the matrices (9) means
that any channel state is reachable from any other
state over a finite number of steps when receiving
independent, equally distributed symbols to the
channel input. Below we assume that the matrices
(9) in are irreducible for any x and y.

After substitution (25) into (3) we have the fol-
lowing theorem.

Theorem. Let channel be specified by conditional
probabilities (8), where the matrices (9) are irre-
ducible, and let the decoding function y be given
by equation (12) with integer parameters W and B,
where W > B > 0. Then the achievable random coding
exponent E’(R; y) for the code ensemble with i. u. d.
code symbols is

E; (B; v) = max By (v, p) - pR),
0<p<1

where  Eg(y, p)=maxEy(y, p, ) = (1+p)logq, -

—(ZB+1)_1Iog(r{1i(r)1r(K(k, p))j, and r(K(L, p)) is

the maximum eigenvalue (spectral radius) of ma-
trix K(A, p), given in equation (22).

Conclusion

In this paper representing the first part of the
general study we built a random coding bound ap-
plicable to a wide class of channels with memory de-
fined as probabilistic finite-state machine. This class
of the models describes many transmission channels
important for theory and practice. Among them, we
can highlight channel models with intersymbol in-
terference, which are widely used for description of
data transmission and recording systems. To obtain
the main result, an approach used mismatched de-
coding function is applied. The choice of decoding
function was the main problem of this study. In the
second part of the work we will give examples of cal-
culating the exponent of random coding for several
models of channels with memory, their discussion
and comparison of these results with known ones.
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Appendix A

Let us consider the computation of the prob-

abilities DPyix (yk |xk B) for some k. The seg-

ment ng’VW[; can be represented as a concatenation

XII?VW!; (X]lz I]?Vl X]1:+§, x’;ﬁi‘gﬂ) Therefore,

P YW xR )= S S by (vE IxEY )<

E-B-1 _ktW
Xp-Ww  Xg+B+1

<y (xE ) o (xEE B ).

For i. u. d. components of the vectors Xk B

and xiggﬂ the following equation is wvalid:

Px (Xlli II?V 1) Px (Xﬁ%vﬂ) _(W_B). Hence,

Py (VEW 1xE4E )=

Z py|x(yk+W }i;+%) (A1)

kE-B-1 _k+W
Xp-w xk+B+1

_ g 20V-B)

Then, using the equation (8), we have

B+W | B+ W i Dy |T
pylx(Yk+W|thW):ps 11 Py | x0) 1T =
=k W

k—-B-1 k+B
=ps{ I P(y‘”|x“b}[ I1 P(y“Hx“be

I=k-W l=k—B
k+W . ; T
< T Pw®«D) 1
l=k+B+1

and further

z Pyix (yk+W k+W )

k-B-1
Xp-w xk+B+1

k-B-1 k+B
=p{ I P(y“’)]{ 1 P(y“Nx“’)Jx

I=k-W l=k—-B

k+W . T
[ I1 P(y”)jl,
l=k+B+1

where P(y):ZxEXP(y|x). Then using equation

(A1) and notation (14) we obtain the expression (13)
fork=W + 1.

Appendix B

To calculate the sum wa(y; x)k, let us repre-
sent the vector x as a sequence of N(B) subvectors

of length 2B + 1 except perhaps the first and last
segments,

k(0)+B  k(1)+B
x= ( Xk(0)-B* Xk(1)-B* "

k(n)+B k(N (B)-1)+B )

Xk(n)-B* == Xp(N(B)-1)-B )’ (B1)

where k(n) is defined in equation (11). Then from the
equation (12), it follows that

ngy A
G { T o5 xt002) })%, )
n=n,
where n, is the smallest integer such that
k(ny) — W > 1, n, is the greatest integer such that
k(ny) + W < N, and a,, b; are positive multipliers de-
pending on initial and final segments of the vectors
x and y.

After a summation over i. u. d. and disjoint seg-
ments of the vector x, we have

2y x)" —a(x)[HDl(yig;*%, )Jb(x), (B3)

n= nl
where

Diy; )= Y. pylylnt, yey?H,

XEXZB+1

and a()A), b(L) are positive multipliers obtained after

summing the quantities a% and b{‘ over the initial
and final segments of the vector x.
Let us now derive an expression for the sum

prylx (y | x)w(y; x)_)‘p. In this case, we also rep-

resent the vector x as a sequence of subvectors of
length 2B + 1 except the first and last ones, which
may have a different length [see equation (B1)].
Using equation (B1) one can rewrite the expression

Pyx(¥1%)=

Ty
k k
=pA1| [] Py (vE3 B Ixf0 ) 11", (B9

n=ny

where, as before, n; is the least integer such that
k(ny) — W > 1, and n, is the greatest integer such
that k(n,) + W< N; A; u B; nonnegative matrix
multipliers of dimension |S|x |S|, corresponding to
the first and last segments of the vector x, and

(v]%)= H P(y‘”|x(’>> yeY2B+ e x2B41 (B5)
=1

vIX
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where the matrices P(y®|x(®) in the right-hand part
of (B5) is defined by equation (9).
Using expressions (B4) and (B2), we can write

Pyx (Y | ¥)y(y; %) =

Ty
=y k(n)+B | k(n)+B
=Psqy pAl[ I1 Ple(ykggtB |Xk%t3)X

n=n
—Ap
k(n)+W | _k(n)+B vy T
XPy|x(yk§Z§—W|xkEZg—B) jbl ’B1".

Summing over i. u. d. and disjoint components
of the vector x, we get

Zpy\x (y | X)‘V(y; X)_}Lp =

ny
[l 3 w2y

n=n; xeX
—Ap
k w

where A u B are inessential matrix multipliers ob-

tained after summation a;*?Ajand b *"B; over

the initial and final segments of the vector x re-
spectively. And finally it follows from (B6) that

Zpy|x (y | X)\V(y; X)—Xp =

iy
= psA[ [1D: (Y';‘%%; kp)} B1", @87

n=ny
where Dy(y; Ap) is matrix S| x |S], defined as

. W+B+1
Do(vi )= Y. Py B ix)x
x€X2B+1
xpyy (%) 7P, y e Y2V, (B8)

and matrix Pylx (y|x) is given by equation (B5).

Appendix C

Consider two adjacent terms in the product on
the left-hand side of (21)

U
T1D(vAG s 2 ) =D(ypom s 0 o)

n=n,

k(n,+1)+W . k(ng)+W .
XD(yk(Ziﬂ)—W’ A, p)"'D(yk(Zi)—W' A, p).

They depend on two adjacent blocks yz%fg

and yZEZiBf% The indices of the first block are

n2B+1)+1-W, .., n2B+ 1)+ 1+ W, and indices
of the second block are (m+1)2B+1)+1 - W, ...,
(n+1)@2B+1)+1+ W, i. e. the second set of indices
is shifted right to 2B + 1 positions. An intersec-
tion of the position numbers exists on an interval
of length 2ZW +1)-(2B+1)=2(W- B). If W > B,
then this intersection is not empty; an illustration
is shown in Fig. C1, a. Since W > B, the case W =B
is also possible. In this case there is no intersec-

tion and the summing in over vector y is reduced to

summing separate factors over segments yi%i% .

This case is simpler to analyze and hence omitted.
The illustration is given in Fig. C1, b.

Consider the case that W > B. Let us introduce
indicesi, j=1, 2, ..., ¢2"=B) and and establish a one-
to-one correspondence between indices i, j and vec-
torsy € Y2W as i <> y2WB u j>y3¥ 5. Then we

consider two cases: 1) the vectors y?(W~5 and yaw il

have common elements (see Fig. C1, a), and 2) the

vectors y2W-B) and y3j.3 have no common ele-
ments (see Fig. C2).

The first case takes place, if 2W+1 < 2x
x 2(W — B), or if W > 2B+ 1, because W is integer.

2wW+1
2B+1

a)

v

;ﬂ_/
2W+1 .

. Yy L4
y%(W B) i 2B+2 J

by | 2WH1

B Fig. Cl. Layout of adjacent segments: a — intersec-
tion of segments, W > B; b — disjoint segments, W =B

2B+1
/ LP\z(W—B)

- 2W+1 .
y2VB) (i Yapep ©F

B Fig. C2. Intersection of adjacent segments,
2W<4B+1
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The second case takes place if W < 2B+ 1. Since

in the second case two blocks y?("=B) and yam

have no common elements, it is possible to sum
independently over elements with indices from
2(W — B) + 1 to 2B + 1. Therefore, we can define the
S| x |S| matrices KA, p) as

D(y; L, p), W 22B+1;
> D(yi L p),W<2B+1, (C)

2B+1
Ya2(w-B)+1

K;;i(h, p)=

wherey € Y2W, j yf(WfB) and j o yam.g.

Also define a block matrix K(, p) = [K; (%, p)] of
order |S|g2("W=B), Then the sum over y on right-hand
side of (21) can be written as

3 (W) T DAY 2, )

y n=m

N
x V(yk(ngﬂ)—W]j =

=F[[ K®, p)G=FKQ, p)2 " G, (C2)

n=ny

where matrices U() and V() are defined by equa-
tions (19), F is a block matrix of size |S| x [S|g2V=B),
and G is a block matrix of size |S| ¢2(W=B) x |S|.

The matrices F and G on the right-hand side of
(C2) do not affect the asymptotic expression for the
random coding exponent, so the description of their
structure is not given due to space savings.
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TI'paruna ciayuaifHOro KOJMPOBAHUA NI KAHAJOB € IaMATHI0 — JeKOAUPYIOIIAd (DYHKIIUA C YACTUYHBIM IePEKPHITHEM

Yacts 1: BLIBO,I[ OCHOBHOTO BBIDAMKEHUA

Tpodumos A. H.2, Kauz. TexH. HayK, HoIeHT, andrei.trofimov@vu.spb.ru
aCaukT-IleTepOypreKuii rocyJapcTBeHHBIA YHUBEPCUTET a9POKOCMUUECKOro npubopoctpoenus, B. Mopckasd yi., 67,
Caukr-Iletepbypr, 190000, PP

BBeneHue: 3azjaua BBIUNCIECHUA S9KCIOHEHTHI CIYYaHOTO KOAMPOBAHUA BO BCEM AMAaIlla3oHE CKOPOCTEH KoJa i KAHAJIOB C KOHEU-
HBIM YHCJIOM COCTOSHUH He pellleHa ITOJHOCTBIO U OCTaeTCa aKkTyaabHoU. IIpeacraBigercs, 4To Xxopollee IpUOIMIKeHNe K ONTHMAIbHOM
9KCIIOHEHTEe CJAYYalHOr0 KOAUPOBAHUA MOYKET OBbITh HaMJIEHO IIPU MCIOJb30BAHUU HECOTJIACOBAHHON qeKomupyioiieit pyuknuu. [lens:
IOCTPOUTDH SKCIOHEHTY CIYYaWHOTO KOAMPOBAHUA, OJIUSKYIO K ONTUMATIbHON. Pe3yapTaThl: IpeAcTaBieHa HOBas IPAHUIA CIYYANHOTO
KOAVPOBAHUA, IPUMEHUMAs JJIA IIUPOKOro KJjacca KaHAIOB, B TOM YHCJe AJIA TeX, JJIA KOTOPBIX IOJHAA SKCIIOHEHTA CIyYalHOrO KO-
AVPOBAaHUSA paHee He OblLIa IIOCTPOeHa. BBIBOA ATOU I'PaHUIILI OCHOBAH Ha MCIOJIb30BAHUU HECOTJIACOBAHHON JeKOoAUpYIoIeil QyHKIINNT,
KOTOpasd 3aBUCUT OT JBYX ITaPaMETPOB: AJUHBI CETMEHTa BBIXOJHON IIOCJIEeL0BATEJILHOCTH KaHana W U IJIUHBI CETMEHTA IIOCJIe[OBATEIb-
HOCTH Ha BXoJie KaHaia B. Beauunnsl W u B B CyIIeCTBEHHOH CTeIIeHN BIUAIOT Ha 3HAUEHUA 9KCIIOHEHTEI CIyYaiiHOI0 KOJUPOBAHUA U HA
CJIOJKHOCTSB €e BbIUNCJICHUA.

KroueBsie cjI0Ba — IpaHUIA CIYUYAWHOTO KOAMPOBAHUSA, KAHAJ C KOHEUHBIM YHUCJIOM COCTOSHUM, HECOTJIACOBAHHOE TEKOJUPOBAHNE,
Teopema Ileppona — ®Ppobenuyca.
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