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Introduction: Automatic detection of animals, particularly birds, on images captured in the wild by camera traps remains
an unsolved task due to the shooting and weather conditions. Such observations generate thousands or millions of images
which are impossible to analyze manually. Wildlife sanctuaries and national parks normally use cheap camera traps. Their low
quality images require careful multifold processing prior to the recognition of animal species. Purpose: Developing a background
extraction method based on Gaussian mixture model in order to locate an object of interest under any time/season/meteorological
conditions. Results: We propose a background extraction method based on a modified Gaussian mixture model. The modification
uses truncated pixel values (in low bites) to decrease the dependence on the illumination changes or shadows. After that, binary
masks are created and processed instead of real intensity values. The proposed method is aimed for background estimation of
natural scenes in wildlife sanctuaries and national parks. Structural elements (trunks of growing and/or fallen trees) are considered
slowly changeable during the seasons, while other textured areas are simulated by texture patterns corresponding to the current
season. Such an approach provides a compact background model of a scene. Also, we consider the influence of the time/season/
meteorological attributes of a scene with respect to its restoration ability. The method was tested using a rich dataset of natural
images obtained on the territory of Ergaki wildlife sanctuary in Krasnoyarsk Krai, Russia. Practical relevance: The application of
the modified Gaussian mixture model provides an accuracy of object detection as high as 79-83 % in the daytime and 60—69 %
at night, under acceptable meteorological conditions. When the meteorological conditions are bad, the accuracy is 5-8 %
lower.
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Introduction

Monitoring of animals in the wild using camera
traps is one of the promising ways for monitoring
animal behavior in the wildlife sanctuaries and
national parks. Camera traps provide tremendous
amount of information capturing any motion in
a scene. Some camera traps produce a set of still
images of moving object (animal, bird, or human)
through 5-8 s, while other devices deliver a short
movie. In this article, we deal with a set of still im-
ages, which are automatically marked by current
date and time. Each camera trap has own station-
ary position in a predefined place, such as animal
trails, watering places, and so forth. The stored
amount of such information, for example for a half
of a year, can achieve several terabytes from dozens
of camera traps that makes impossible to process
them manually.

For recognition of animal species or analysis of
animal behavior, we need to process the original
images sometimes of low quality in such manner
that allows us to separate a visual object of inter-
est from cluttered background. The well-known
scene background challenges make this task dif-

ficult for solving. Among them, it is worth noting
the cluttered background, occlusions, color shad-
ows, moving background (for example, fluttering
of leaves or waving trees), illumination changes
within a day, flash shooting within a night, season
changes, and meteorological impacts. At the same
time, a scene remains unchanged principally and
it is profitably regarding the computational costs
to store a background pattern of a particular scene
with a possibility to transform it into another
state depending on the time/season/meteorologi-
cal attributes.

Our contribution is twofold. First, we propose a
simplified background extraction method based on
the modified Gaussian Mixture Model (GMM). The
modification uses the truncated pixel values (in low
bites) in order to decrease dependence from illumi-
nation changes and shadows with following crea-
tion and processing the binary masks instead of re-
al intensity values. The proposed method separates
a scene into persistent (trunks of growing and/
or fallen trees) and non-persistent (snow, foliage,
grass, sky, lake, river, and Earth surface for boreal
forests) textured regions. The persistent textured
regions serve as the landmarks in any season with
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a non-changeable distribution, while the distribu-
tions of the non-persistent textured regions are
changed respect to a current season. Such approach
provides a compact background model of a scene.
Second, we consider the influence of the time/sea-
son/meteorological attributes of scene respect to
restoration ability. Note that we need not to provide
a high accuracy of the proposed background models
because the goal is to detect the location of the ob-
ject of interest.

Related work

Background subtraction method compares the
current image with a reference image called back-
ground model. However, this method has many
disadvantages because of illumination changes,
shadows, occlusions, noise, and dynamic back-
ground [1]. All these impacts make unreasonable
to employ this method in many applications. In
such cases, the background extraction algorithms
are necessary.

In [2], one can find the detailed survey on tradi-
tional and recent background models with the com-
plete classification from basic models to domain
transform models. Traditional background models
are classified in the following categories:

— basic models (average calculation, median
processing, and histogram analysis);

— statistical models (Gaussian models, support
vector models, and subspace learning models);

— cluster models (K-means models, codebook
models, and basic sequential clustering);

— neural network models (general regression
Neural Network (NN), multivalued NN, competi-
tive NN, dipolar competitive NN, self organizing
NN, and growing hierarchical self organizing NN);

— estimation models (Wiener filter, Kalman fil-
ter, correntropy filter, and Chebychev filter).

In last decade, appearance of visual content from
mobile devices and Internet videos requires the de-
velopment of background subtraction methods for
challenging environments. The recent background
models are classified in the following categories:

— advanced statistical background models (mix-
ture models, hybrid models, nonparametric models,
and multi-kernels models);

— fuzzy background models (fuzzy background
modeling, fuzzy foreground detection, fuzzy back-
ground maintenance, fuzzy features, and fuzzy
post-processing).

— discriminative subspace learning models (dis-
criminative subspace models and mixed subspace
models);

— Robust Principal Components Analysis
(RPCA) models (RPCA via principal component
pursuit, RPCA via outlier pursuit, RPCA via spar-

sity control, RPCA via sparse corruptions, RPCA
via log-sum heuristic recovery, RPCA via iterative-
ly reweighted least squares, Bayesian RPCA, and
approximated RPCA);

— subspace tracking (Grassmannian Robust
Adaptive Subspace Tracking Algorithm (GRASTA),
transformed-GRASTA, lp-norm robust online sub-
space tracking, and Grassmannian online subspace
updates with structured-sparsity);

— low rank minimization (contiguous outliers
detection, direct robust matrix factorization, di-
rect robust matrix factorization-row, probabilistic
robust matrix factorization, and Bayesian robust
matrix factorization);

— sparse models (compressive sensing models,
structured sparsity, dynamic group sparsity, dic-
tionary learning, and sparse error estimation);

— transform domain models (fast Fourier trans-
form, discrete cosine transform, Walsh transform,
wavelet transform, and Hadamard transform).

Not all from mentioned above methods are suit-
able for the monitoring task in the wild. Advanced
statistical models and codebook models are among
the most promising methods.

Background extraction is the cornerstone of
background subtraction method. One of the tradi-
tional methods suitable for natural scene analysis
is a temporal median filter method [3]. It requires a
durable observation during training step. A medi-
an value of the certain pixel points extracted from
K frames is taken as the background pixel value in
this point. The improvement of this method called
as the average method supposes to calculate the
average value instead of the median value. The in-
cremental form of the average method is often used
for real-time application, when for each pixel & the
background model is update using equation

n-1 1
By =——Bp +—1I, )}
n n

where B;, and B, are the intensities in the current
background model and new background model,
respectively; n is the number of frames; I, is the
intensity in current frame.

The incremental method has lesser computation-
al cost respect to the temporal median filter meth-
od and provides better extraction result. In [4], it
was shown that if n = 100 and more the incremental
method has become a running average background
learning method:

Bk+1 Z(l—G)Bk +0cIk, (2)

where a is the learning factor, o = 0.01, oo = 0.1, or
another experimental constant.

This method is widely used in practice; however,
it is prone to generate the ghosts.
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The Gaussian mixture model for background es-
timation was proposed in [5]. In the GMM, the pixel’s
intensity values over a time are modeled by a single
Gaussian or as a mixture of several Gaussians. The
background pixels are identified by comparing the
pixel values and mean values of models. Many im-
provements of the GMM are available in literature
[6—11]. The GMM is appropriate for complex natu-
ral scenes including tree branches shaking, water
rippling, etc. The disadvantages of the GMM are
the high computational complexity and necessity to
store the Gaussian model parameters.

Difficulties in building a proper mathematical
model, which describes the probability density func-
tion of pixel values, led to development of a non-par-
ametric approach for background modeling. In [12],
a Kernel Density Estimation (KDE) was proposed
with the main idea to evaluate the intensity density
of pixels directly from sample history values that
made this method sensitive to detection of moving
objects. A nonparametric background generation
model for on-line surveillance was proposed in [13].
First, the statistics of background variations with-
out training samples were estimated. Second, the
background was generated using a heuristic frame-
work. The combination of the KDE and GMM was
offered in [14] in order to estimate accurately the
density function of background. Nonparametric es-
timation methods adapt to fast changes’ detection
in a scene. At the same time, they have unsatisfac-
tory background building in situations, when sev-
eral moving objects have different speeds.

In [15], the background was modelled using a
codebook algorithm. This method is referred to
cluster models. For each pixel, a codebook consist-
ing of one or more codewords is constructed based
on a color distortion metric together with bright-
ness bounds. Generally, the clusters represented
by codewords do not correspond to single Gaussian
or other parametric distributions. If the color dis-
tortion of incoming pixel to some codewords is less
than the threshold and its brightness lies within the
brightness range of that codeword, then this pixel
is classified as background, otherwise, it is classi-
fied as foreground. The codebook algorithm esti-
mates a background over a long period with a lim-
ited memory. The original algorithm was improved
in several ways. Thus, a multilayer codebook model
was proposed in [16], which removed most of the dy-
namic background and significantly increased the
computational efficiency.

A universal sample-based background subtrac-
tion algorithm called as Visual Background extrac-
tor (ViBe) was developed in [17]. A classification
model was based on a small number of correspond-
ences between a candidate value and the correspond-
ing background pixel model. The ViBe can be ini-
tialized with a single frame under assumption that

neighboring pixels share a similar temporal distri-
bution. Also, an original mechanism for updating
the background model over time for a set of frames
was presented. Hereinafter, the extensions of the
ViBe approach were proposed in order to eliminate
the ghosts [18]. The ViBe method has advantages in
the computation speed and detection effect but does
not invariant to frequent background changes.

A robust background extraction algorithm
called as Neighbor-based Intensity Correction (NIC)
method was offered in [19]. The NIC method identi-
fied and modified the motion pixels from the differ-
ence of the background and the current frame. The
first frame was considered as an initial background
and updated by the pixel intensity from new frame
based on the analysis of neighborhood surrounding.
In the intensity modification procedure, the com-
parison of the standard deviation values calculated
from two pixel windows was executed. Finally, the
foreground is detected by the background subtrac-
tion algorithm with an optimal threshold calculat-
ed by the Otsu method.

Two universal modifications, such as dynamic
background estimation and complementary learn-
ing, were implemented in GMM, ViBe, and code-
book algorithms for complex dynamic background
modelling and accurate foreground objects [20].
Combining the complementary learning technique,
these improved algorithms had good performance
on the detection of dynamic background including
waving tree, rippling water, and fountain.

The approach, when the background model was
augmented with an explicit foreground model,
was developed in [21]. Thus, two statistical models
(background and foreground) were used in a closed
loop. A background model is periodically updated to
account for illumination changes, while foreground
detection corrupts the intensity of the background
model. In addition to a non-parametric background
model, these authors used a foreground model based
on small spatial neighborhood. The hypothesis test
and the Markov random field improved a spatial
coherence of the detections. Such approach can be
combined with non-parametric kernel or mixture of
Gaussians.

In [22], a texture-based background model was
proposed using Local Binary Patterns (LBPs). In
spite of LBPs are invariant to illumination chang-
es, they are not robust to noise. For example, if the
central pixel value in LBP is affected by noise, then
the corresponding LBP histogram provides the in-
creased number of false positive or false negative
errors.

A short literature survey shows that the interest
to the background extraction algorithms remains
stable. These algorithms are developed in various
directions, such as accuracy of object detection,
computational costs, and robustness to various
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factors. Also, a goal of solving task determines a
choice of approach.

Mixture of Gaussians models

In Gaussian mixture model, each pixel’s intensi-
ty is determined by a mixture of K Gaussian distri-
butions, where K is a small number ranging between
3 and 5. Each Gaussian distribution is associated
with its contributing weight. The mean p,,, the var-
iance ok, and a weight w,, are the main parameters
of GMMs. Evaluation of these parameters can be
implemented using an Expectation Maximization
(EM) algorithm with recently observed data. The
EM algorithm has high computational cost, instead
of which a recursive algorithm that updates the
GMM parameters at each time instance is common-
ly used.

Thus, in general GMM each pixel is considered
as a mixture of K Gaussian distributions, which
probability P(X)) is evaluated by equation

K
P(Xy)=2 wjs *n(Xt’ Mjto Zj,t)’ 3)
i

where X, is the pixel value at time ¢; K is the number
of Gaussian distributions; w;, is the weight value;

w;, is the mean value, and 2z j,t is the covariance
matrix of the jth Gaussian at time ¢, respectively; 1
is the Gaussian PDF. The Gaussian PDF 1 is defined
by equation

ﬂ(Xt, Hj,ty Zj,t) =

1 —
1 le‘g(Xt‘“f,t)T(Zj,t) I(Xt‘“fst), @

n

(2m)2

2
Z;,t‘

where n is the dimension of X,.
For simplicity, the covariance matrix )y jt isde-

fined as c?,tl for the j** component, where I is the

identity matrix, under assumption that the compo-
nents of X, (Red, Green, and Blue) are independent
and have the same variances.

The background distributions have higher prob-
abilities and smaller variances due to the probable
background colors stay longer than the foreground
colored objects. This observation makes the GMM
an updating model. New coming pixel is checked re-
spect to the existing model components. If the pix-
el value is within 2.5 standard deviations of some
weighted Gaussian distribution, then this distribu-
tion is updated. In the opposite case, a distribution
with minimum weight is replaced by a new distri-

bution using the current mean value. This new dis-
tribution obtains the high initial variance and low
prior weight. Then the K distributions are sorted
according to value w; ,/c; ,, where o, , is the 1D var-
iance of the j*h Gaussian in the mixture at time ¢.
The first B distributions are selected as the back-
ground model using equation

b
B= argmin[ Z wp,>Tpg J, b)
b k=1

where b is the number of selected Gaussian
distributions; T is the predefined threshold (it
represents the minimal quantity of the data that
ought to be considered as the background model and
usually is set to close to 90 %).

When the matching process of the incoming pix-
el is completed, the prior weights of K Gaussian dis-
tributions are changed by equation

Wy =(1— 0wy, 1 +a( My, ), (6)

where o is the learning rate; M, , equals 1 for
the matched distribution and equals 0 for the
unmatched distribution.

The weights of distributions are renormalized
by updating the values of mean and variance apply-
ing equation

e =(1-p)uyg +pXy5
G? :(I_P)G?—l +P(Xt —Hg )T (Xt — g ), )

where

p=om(X;|u, of)-

The multiple modifications of GMM follow the
main idea to support three consecutive stages:
background initialization, background estimation,
and background update.

Proposed method for object detection

Consider a scene, where an object (animal, bird,
or rarely human) is periodically appeared and its
appearance is captured by a camera trap. The loca-
tion of camera trap is chosen by foresters based on
long-time observations of a territory. A camera trap
captures any motion in scene in any time and as a re-
sult provides a series of images through 3-5 s (this
means an obtaining of 6—8 images with a relative-
ly good visibility) or a movie with duration 8-10 s.
Suppose that we have a set of image series taken in
different seasons.

A scene remains the same with different chroma-
ticity due to a season. This means that we can elab-
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orate a background initialization in detail building
the GMMs for all seasons. The following two stages:
background estimation and background update, are
executed when a new image series is incoming. Note
that each image contains information about time,
day, and temperature, and each GMM is also asso-
ciated with time and season information. Thus, we
ought to find a correspondence between the current
image series and GMM by query.

Consider the consecutive stages of the proposed
method.

Preliminary image segmentation

The best selection for preliminary image seg-
mentation is a winter season, when a background
has a restricted palette of colors with prevailing
white, brown, and black colors and their corre-
sponding color shades. Let us roughly consider a
scene as a combination of the structural elements
(trunks of growing and/or fallen trees), which posi-

tions change rarely, other textured regions depends
from season and unknown moving objects.

First, the dark colored masks (in the case of bo-
real forests) are extracted from a series of winter
images and combined in order to create a common
winter mask. During mask creation, only exten-
sional dark regions are marked as the candidates
for structure elements. Second, this procedure is
applied for the series of spring, summer, and au-
tumn images As a result, the common spring, sum-
mer, and autumn masks are obtained. Note that the
sizes of structural elements are the biggest in the
winter mask, while in other seasons trunks can be
overlapped by foliage. Third, the generalized masks
with structural elements are created by imposing
the common masks. Only the common parts of all
masks are considered as the reliable landmarks in
a scene. The building of season masks is depicted in
Fig. 1, a—d, while their combination and obtaining
the reliable landmarks is given in Fig. 2, a—c.

a) b)

c) d)

B Fig. 1. Examples of background model building: a, b, c — original images (the top row — at night time, the bottom
row — at daily time); d — detected structural elements of the corresponding images

a) b)

©)

B Fig. 2. Background model building using reliable landmarks: a — images with animals; b — reference background

images; ¢ — results of animal detection
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The detected structural elements may be useful
for alignment of following incoming images.

Then the distributions of corresponding tex-
tured regions (trunks, snow, foliage, grass, sky,
lake, river, and Earth surface for boreal forests) are
built using the rich experimental material stored
by 5 previous years. In other word, a description of
each texture transmitted from RGB- to YUV-color
space is a feature vector, which includes statistical
parameters of distribution (mean value M, vari-
ances ¢, homogeneity U, smoothness R, and entro-
py E) [23]. The corresponding formulae are pointed
in Table 1.

Also, two modified texture features — relative
smoothness R, ;, and normalized entropy E,, — can
be calculated using equations

R .- —logR if R>0;
md =1 10 if R=0, ®)

E,, =E/log,L, 9)

where L is a number of brightness levels, L > 1.

If parameter R = 0, then we forcibly maintain a
relative smoothness R, ;= 10 (small empirical val-
ue differing from 0). Normalized entropy E, indi-
cates some equalization effect in dark and bright
areas of frame.

The main parameters are the mean value and
variance. The remained parameters, such as the

B Table 1. Statistical texture features

Caption Equation
Central moment = 3
by order & uk(z)= i:O(Zi _M) p(zi)
L-1
Mean value M M =7 zp(z)
i=0
9 L-1 9
Variance ¢ o” =pg(2)=2 (2 -m)" p(z)
i-0
L-1 9
Homogeneity U U= p*(z)
i=0
Ro1-_ 1
Smoothness R 1+62(2)/(L—1)2
L-1
Entropy E E=-3" p(z;)logy p(2;)
i=0

homogeneity, smoothness, and entropy, serve as the
additional parameters in order to decrease a num-
ber of background clusters.

Background initialization (training stage)

Suppose that the training set includes several
dozen of images captured by a single camera trap
in all seasons. Each image is divided into non-over-
lapping blocks of sizes of n x n pixels. Each block
is characterized by two parameters: the normalized
mean value M calculated as follows:

1 n n
M=—>"% pvy, (10)
n-i=1j=1

where pv;; is the pixel value in the position (i, j)
of the block, and binary bitmap BM similar to
modified LBPs:

b 1, if pY;; >M;
Yij = 0, otherwise, 1)
where bv;; means the bit in the position (i, j) of a BM.
During experiments, we used n =4 and n =8
depending an image resolution.

To avoid a impact of sunny weather that stimu-
lates the deviation of hue and shadows’ presence,
we replace two low bits of pixels’ values in textured
regions by zeros.

The forest background is such that small number
of clusters describes a background model. Initially,
K different binary bitmaps are randomly generat-
ed for {BM,, BM,, ..., BM} blocks with the weights
1/K. Each binary bitmap is assigned a weight w,, be-
tween 0 and 1 and the sum of K weights equals 1.
A new block BM,,,, is compared with the K bitmaps
using the Hamming distance HD provided by fol-
lowing Equation, where £ is in the range of [1, K],
@ is the summation of mod 2:

n n

HD(BMye, BMy) =2 (b0} ®{bvy}, ) (12)
i-1j-1

The block BM, ,, matches to the block BM, if

inequality (13) is satisfied, where TH is the prede-
fined threshold, and, otherwise, the block BM, ,  is
regarded as a new background cluster:

min HD(BM,,,,,, BM})<TH. 13)
Then, the weight of each block is updated by:
wj, = aW, +(1-o)wy, (14)
where o is the learning rate; W, is the coefficient,

which for the best-matched bitmap equals 1 and for
remaining bitmaps equals 0.
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The GMM, which short description one can find
in Section “Mixture of Gaussians models”, helps to
create a generalized background model, reliable in
statistical meaning. For simplicity, we analyze the
variances instead of using a covariance matrix.
According to Equations (8)—(14), we create sev-
eral GMMs for all seasons in daily/night time for
Y-channel in YUV-color space. The requirements to
GMM can be weaken and computation becomes sim-
plifier through use of texture descriptor in a view
of a binary bitmap.

The proposed method provides the background
models of a single scene with low computational
loads during the working stage because the compar-
ison is implemented on the level of binary values.

Background estimation and background update
(working stage)

The stored images through a half of a year are
processed in the package mode. First, they ought to
be sorted manually or automatically respect to cam-
era traps and seasons. Second, a procedure of back-
ground estimation and update is executed based
on the initial corresponding GMM. The working
stage does not principally differ from the training
stage. The calculations use Equations (10)—(14) but
the goal of the working stage is to find the position
of an object of interest. Note that camera trap cap-
tures an image, when a movement in a scene is de-
tected. The algorithm finds the region in an image,
which distribution differs from the background
distributions. The definition of animal or bird type
is outside of this article.

The described scheme works well under good me-
teorological conditions. However, meteorological
conditions impact significantly on the quality on
an image and, consequently, a potential ability for
animal/bird detection. At this sense, the algorithm
ought to detect the type of meteorological impact,
estimate a degree of distortion, and restore an im-
age if a degree of distortion is minor.

Fog can be detected by analysis of color ranges.
If the color ranges are restricted and deposed to the
higher values, then the effect of “whitened color”
has a high probability. This is a simple procedure
of histogram analysis in RGB-color space. The

OBPABOTKA NHDOPMAUNN N YNPABAEHNE
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threshold of decision making is determined empiri-
cally.

Rain and snowfall are simulated as a noticeable
noise with specific structure. For example, rain re-
mains the short line segments of white color, which
have the identical directions. Snowfall keeps the
white spots of different size and shape. Thus, the
algorithm searches these structural elements uni-
form distributed on a whole image. Also, the deci-
sion marking is based on empirical observations.

The most interest cases appear, when the distor-
tions are small and the algorithm tries to restore
the damaged images. One can read about possible
restoration techniques in previous publications of
the authors [24]. Sometimes the complex methods
including morphological closing of visual objects
ought to be applied. Example of reconstructed im-
age is depicted in Fig. 3, a—d.

However, when meteorological conditions are
too bad during shooting, the object detection is im-
possible ever by a human vision.

Experimental Results

Experiments were conducted using the dataset
of images captured in the territory of wildlife sanc-
tuary Ergaki, Krasnoyarsky Kray, Russia. This
dataset includes more than 38,000 images of ani-
mals captured by camera traps in different weather
conditions and different seasons. The most number
of images have the complex structure, various arti-
facts, and noises. Near for 1,000 images, there were
built the masks with the localized animals or birds
manually (Fig. 4, a, b).

During experiments, the automatic detection of
localization of animal or bird was implemented us-
ing the marked volume of dataset. The designed al-
gorithm includes such main steps as a background
modelling, saliency detection, and localization of
animal or bird in an image. Some results are depict-
ed in Fig. 5, a—e.

Animal localization using saliency detection
procedure shows good results if an animal is situ-
ated in the middle area of an image and also if an
animal differs by color or intensity compared the

a) b)

c)

d)

B Fig. 3. Examples of complex cases: ¢ — high illumination at night; b — foreground object close to the camera; ¢ —
weather impact (small fog); d — example of a reconstructed image

N\

Ne¢ 6, 2018

AN a

NHO®OPMALNOHHO-YNPABASIIOLLVE CUCTEMbI



7

4 OBPABOTKA IHOPMALIN N YNIPABAEHVE

a)

b)

B Fig. 4. Examples of ground truth images from Ergaki 2018 dataset: a — original images; b — ground truth masks

a)

b)

¢)

d)

e)

B Fig.5.Examples of segmentation and animal localization using Ergaki 2018 dataset: a — original images 2012_bear.
ipg, 2017 _IMG5044.jpg, and 2013 PICT1696.jpg; b — ground truth image segmentation; ¢ — saliency detection; d —
masks obtained from background and saliency estimation; e — results of localization
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a)

b)

B Fig. 6. Examples of saliency detection using Ergaki 2018 dataset: a — successful examples; b — poor examples

B Table 2. Comparative results of detection of animals
and birds using a coverage measure

Method | e | Coverage | (Mt o
SeleCti[‘;%]S"amh 2829.7 | 5903.5 | 13882(99.8)
GOP [26] 2489.1 | 3984.6 | 9874 (98.2)
MOP [27] 335.8 | 482.3 | 891.7(96.7)
FCOP [28] 132.8 | 384.2 | 393.1(90.4)
SORPPV [29] 95.4 237.3 | 626.9(93.1)
Proposed method 127.2 226.1 689.1 (94.2)

B Table 3. Common comparative results of detection of
animals and birds using F-measure

Method F-measure
EC-Best [30] 0.7703
YOLO [31] 0.7515
Fast-RCNN [32] 0.7937
SORPPV [29] 0.8398
Proposed method 0.7812

background (Fig. 6, a, b). In some cases, an animal
localization in an image is even difficult even for a
human (Fig. 6, b).

For efficiency evaluation, the F-measure was ap-
plied:

2TP

Feer—— (15)
2TP+FN +FP

where TP is the number of true positive; FP is the

number of false positive; FN is the number of false

negatives. A region is considered as a true positive

if it has more than 50 % intersection with a ground-

truth bounding mask.

Also many algorithms are evaluated using a
term of coverage as a numerical measure of the
corresponding detected and ground truth pixels
[25—29]. The comparative results using a coverage
measure and common comparative results using
F-measure for detection of animals and birds in the
images, which are involved in Ergaki 2018 data-
set, are represented in Tables 2 and 3, respectively.

The best resulted in Tables 2 and 3 are marked by
Bold.

The efficiency of detection of animals and birds
in images achieves 70—80 % depending an image
quality and weather conditions. The use of saliency
detection algorithm allows us to increase this pa-
rameter on 3-8 %.

Conclusions

In this article, a background extraction method
for automatic detection of animals and birds in the
wild using camera trap images was developed. The
experiments were conducted using rich dataset of
natural images obtained on the territory of wildlife
sanctuary Ergaki, Krasnoyarsky Kray, Russia. The
proposed method provides the detection of animals
and birds on a level 70—80 % due to the multiple chal-
lenges caused by shooting and weather conditions.
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ITocTaHOBKA MPOGIEMBI: aBTOMATHUECKOE O0HAPY KEHNE }KUBOTHBIX U IITUIL B IPUPO/ie Ha N300PAKEHUAX, IOJYUEHHBIX OT (DOTOJIOBY-
IIeK, OCTAeTCA HePeIeHHOH Mpo6IeMoil 13-3a YCIOBUH CheMKH U IIOTOAHBIX aKTOpoB. B pesynbrare Takux HabJIOLeHUI (hopMUpPYyeETCa
6OJIBIIION 00'beM M300PaKeHUl, ThICAUYN UJIN MUJIJINOHBI, KOTOPbIe HEBO3SMOYKHO aHAJIU3UPOBATH BPYUHYI0. OOBIUHO B 3aII0BEIHUKAX U
HaAIMOHAJbHBIX HapKaX UCIOJb3YIOTCA G0JKeTHbIe (POTONOBYIIKHU. II09TOMYy HUBKOKAaYeCTBEHHBIE N300PaKeHNUA, ITOJIyUeHHbIE C UX 110~
MOIIbIO, TPEOYIOT TIaTeIbHOI MHOTOKPATHOI 00paboTKY Iepe] TeM, KaK PACIIO3HABATH BULI JKUBOTHBIX miau nrtul. Ileas: paspaboTka
MeTo/ia N3BJIeueHuA (PoHA Ha OCHOBE MO/[eJI CMEeCU rayCCUaHOB AJIs O0HAPY KeHUA 00 beKTa NHTepeca IIPHU JI00bIX BDeMEeHHBIX /Ce30HHBIX /
METEOPOJIOTUYECKUX YCJIOBUAX. Pe3yIbTaThl: IPEJIOKEH MeTO/| N3BJIeueHud (hoHA HA OCHOBE MOAUGUITMPOBAHHON MOJEJIN CMECH rayCCu-
aHoB. Moaupukramusa 3aKI0YAETCA B yCeUeHNN 3HAUeHUH TUKCEJIOB (MJIAAIINe PA3PANBI) AJIA YMEHbIIEHNA 3aBUCUMOCTH OT U3MeHeHU
OCBEIIEHHOCTY U HAJIMUYU TeHel ¢ IOCJeAYIONUM CO3JaHueM 1 00paboTKOoI OMHAPHBIX MaCOK BMECTO PeasIbHbIX 3HAUEHUII MHTEHCUBHO-
creii. IIpenyaraemMblil MeTOs IpefHA3HAUEH JJIA OIEHKY ()OHA €CTECTBEHHBIX CIIEH B 3alIOBEJHUKAX U HAIIMOHAILHBIX NapKax. CTPYKTyp-
HbIe 9JIEMEHTHI (CTBOJIBI PACTYINUX U (MJIN) YIABIINX J€PEBbEB) CUUTAIOTCA PETMOHAMHU, Me/JIEHHO N3MEHAIOIUMICSA B Te€IEeHNe Ce30HOB,
B TO BpeMs KaK JPyrue TeKCTyPUPOBAHHBIE 06JIaCTH MOJEIUPYIOTCS TeKCTYPHBIMU MIa6I0HAMY, COOTBETCTBYIOII[UMU TEKYIIIEMY Ce30HY.
Taxoit mogxon obecrieunBaeT KOMIAKTHYIO MOZedb (poHA cieHbl. [JoMuMO TOTO, MBI pacCMaTPUBaeM BIUAHNE BPEMEHHBIX /CE30HHBIX/
MeTEeOpOJIOTUUECKUX aTPUOYTOB CIleHbI OTHOCHUTEIHHO BO3MOKHOCTH €e BOCCTaHOBJIeHUA. MeTox GBI IPOTECTHPOBAH C MCIOIH30BAHUEM
6oraToro Habopa JaHHBIX €CTeCTBEHHBIX N300paKeH i, IOJyYeHHBIX Ha TeppUTOpUY 3anoBeguuka « Epraku», Kpacuospckuii kpaii, Poc-
cuda. IIpakTuyeckass 3SHAUMMOCTB: IPUMEHEHNEe MOAUDUIIPOBAHHON MOJEIN CMEeCU IayCCUAaHOB IIOKA3bIBAET TOYHOCTb PACIO3HABAHUA
00BekTOB 79—-83 % B mHeBHOEe BpeMs 1 60—69 % B HOUHOE BpeMs CYTOK IIPU HOPMAJIbHBIX METEOPOJOTUYECKUX YCI0BUAX. IIpu aToM TOY-
HOCTH BOCCTAHOBJIEHHBIX U300PaKeHU, MOJYUSHHBIX IIPU IIJIOXUX METEOPOJOTUUECKUX YCIOBUIX, CHUKAaeTCA Ha 5—8 % .

KaroueBsie ciioBa — BeruuTaHue ()OHA, ECTECTBEHHAA CIIeHA, MOJIeJIb CMECH rayCCUaHOB, O0HAPYKeHUe YKUBOTHOTO, MOJeJIb (hoHA.
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