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Introduction: Boundary value problems for differential and integro-differential equations with multipoint and non-local
boundary conditions often arise in mechanics, physics, biology, biotechnology, chemical engineering, medical science, finances
and other fields. Finding an exact solution of a boundary value problem with Fredholm integro-differential equations is a challenging
problem. In most cases, solutions are obtained by numerical methods. Purpose: Search for necessary and sufficient solvability
conditions for abstract operator equations and their exact solutions. Results: A direct method is proposed for the exact solution
of a certain class of ordinary differential or Fredholm integro-differential equations with separable kernels and multipoint/integral
boundary conditions. We study abstract equations of the form Bu=Au - gF(Au) =f and B,u=A2u - qF(Au) - gF(A%u) =f
with non-local boundary conditions ®(u) =N¥(u) and ®(u) = N¥(u), ®(Au) =DF(Au) + N¥(Au), respectively, where A is a
differential operator, q and g are vectors, D and N are matrices, and F, ® and ¥ are functional vectors. This method is simple to
use and can be easily incorporated into any Computer Algebra System (CAS). The upcoming Part 2 of this paper will be devoted
to decomposition method for this problem where the operator B; is quadratic factorable.
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Introduction

Boundary value problems (BVP) for differ-
ential and integro-differential equations (IDE)
with multipoint and nonlocal boundary condi-
tions arise in various fields of mechanics, phys-
ics, biology, biotechnology, chemical engineer-
ing, medical science, finance and others [1-14].
More precisely these are elasticity, heat and mass
transfer, diffraction, underground water flow
and population dynamics problems. Perhaps the
first known problem which was reduced to the IDE
alyw(t)+y(t):—a2ﬁlK(t, x)y'’(x)dx is Proctor’s
problem of Equilibrium of an elastic beam in XVII
century. Fredholm integro-differential equations
with nonlocal integral boundary conditions and or-
dinary differential operators, probably, first were
considered by J. D. Tamarkin [15]. Problems with
nonlocal boundary conditions for elliptic equa-
tions first were investigated by A. V. Bitsadze,
A. A. Samarskii[16], while BVP for parabolic equa-

tions with nonlocal integral boundary conditions
were studied by J. R. Cannon [5], L. I. Kamynin [7],
N. I. Ionkin [6] and others. Later such investiga-
tions for Laplace, Poisson and heat equations were
explored by V. A. II’in and E. L. Moiseev [17] and
others [18—-20]. Nonlocal BVP involving integral
conditions for hyperbolic equations were studied
in [21]. Multipoint and nonlocal BVP with inte-
gral boundary conditions for ordinary differential
equations were considered in [22, 23]. Fractional
IDE with integral boundary conditions were given
in [24]. The problem of the existence of solutions
for nonlocal BVP was the subject of many papers
[19, 20, 23, 25—-28]. Exact solutions of BVP with
Fredholm IDE were considered in [29] and [30]. In
most cases numerical methods are employed. Here,
the necessary and sufficient solvability conditions
of the abstract operator equations:

Bu = Au — Qu, Qu = gF(Au),
D(B)={u € D(4) : D)= N¥W)} @
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Biu =A%u - Qqu, Qu = qF(Au) + gF(4%u),
D(B,) = {u € D(A2) : ®) = N¥w),
®(Au) = DF(Au) + N¥(Au), @)

and their exact solutions are obtained in closed
form. This formalism is applied to solve Fredholm
IDE with multipoint or nonlocal integral boundary
conditions, when A is a differential operator and @,
Q, are integral operators with separable kernels. The
problems (1), (2) arise naturally from A. A. Dezin,
R. O. Oinarov extensions of linear operators [31,
26], which are not restrictions of a maximal operator,
unlike the classical M. G. Krein, J. Von. Neu-
man extensions [32, 33] in Hilbert space and in
Banach space [34]. This work is a generalization of
the papers [26—28, 35], where integral boundary
conditions have not been considered. Solving
differential or Fredholm IDE with integral boundary
conditionsisacomplicated problem, sincetheoperators
B and B, in (1), (2) are obtained by perturbations of
boundary conditions and the action of an operator
A. Whereas in [26—28, 35] the operators B=A +@,

9(B)=D(4) and B =42+q, @(Bl)=:o(212)

are obtained only by perturbation of the action of a
correct operator A whichisarestriction of amaximal
operator A.

Terminology and notation

Let X, Y be complex Banach spaces and X* the
adjoint space of X, i. e. the set of all complex-valued
linear and bounded functionals on X. We denote by
f(x) the value of f on x. We write ©(A) and R(A) for
the domain and the range of the operator A, respec-
tively. An operator A, is said to be an extension of
an operator A;, or A, is said to be arestriction of A,,
in symbol A; c Ay, if D(4,) 2 D(4;) and A x =A,x,
for all x € ©(A;). An operator A: X — Y is called
closed if for every sequence x, in ©(A) converging
to x, with Ax, — f,, it follows that x, € ©(4) and
Axy=1fy. A closed operator A is called maximal if
R(A)=Y and ker A # {0}. An operator A:X —>Y
is called correct if R(A)=Y and the inverse A
exists and is continuous on Y. An operator A is
called a correct restriction of the maximal operator
A if it is a correct operator and Ac A. If ¥, € X',
i=1, ..., n, then we denote by ¥ = col(¥y, ..., ¥,)and
Y(x) = col(¥;(x), ..., ¥, (x)). Let g=(gy, ..., g,) be a
vector of X”. We will denote by ¥(g) the n x n ma-
trix whose i, j-th entry ¥,(g)) is the value of func-
tional ¥, on element g Note that ¥(gC) = ¥(g)C,
where C is a n x k constant matrix. We will also
denote by O, the zero and by I, the identity n x n
matrices. By 0 we will denote the zero column
vector.

Extension methods for ordinary differential
and Fredholm IDE

on
Let A:X—>X be an ordinary m*® order differ-
ential operator
Au(x) = agu™(x) + o u™(x) + ... + o, u(x),
o, € R 3)

and X be a Banach space. Usually X =CJ[a, b]
or X :Lp(a, b), p>1. In the sequel we denote by

X% =(D(A

differentiable functions with norm ||u(x)||XA =

) the Banach space of all m times

f) ( x)HX and by X’7! the Banach space of all

m — 1 times differentiable functions with norm

etz = 3.

i=0

ul?) (x)H . @)

X

Note that for X = C[a, b] the spaces X7, X771
are defined by C"[a, b], C™ 1[a, b], respectively. It is
a well-known fact that the operator defined by

Au(x):ocou(m)(x)+
roqu ™Y (x) 4. apu(x) =1,
o, € R, x €la,b], b)
D(4)-=
~{u(x)eC™[a, b):u(a)=u'(a)=...=u"™ " (a) =0

is a correct restriction of A and the unique solution
of (5) is

()= A ()= L H ) (o)
B _(m—l)! a ’
f(x) € Cla, b]. (6)

Lemma 1. Let A;, B,, C;, D are n x n matrices,

NeB, 2018 N\

A Ay Ag
wherei=1, 2, 3,and G=| By By Bg |. Then the
C; C, Cg
next properties of determinants hold true:
Ay Ay Ag
det| By By Bj |=
€ C C3
A;+DB; A,+DB, Aj+DBj
=det B, By B3 5 (7)
¢ Cy Cs
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Ay Ay Ag Ay AytA3D Ag
det| By By Bg |=det| By Bs+BgD B3 |. (8)
C, Cy Cg C; Cy+C3D Cg
I, -D 0,
Proof: Let H=|0, I, O0,| Then 1§
I, D o0,
=0, I, 0,| detH=detH'=1, HG|=H|G|=
=|G| and [H'G| = [HY|G| = |G|. So (7) holds.
Let now H=|0, I, 0,|. Then H =
0, D I,
In On On

=10, I, 0,| H[=HY=1, |GH =|G[H =|G|
0, -D I,

and |GH| = |G|H Y = |G|. So (8) holds and Lemma 1
is proved.
Remark 1. Consider a n?xn? matrix G=

All cee Aln
S ,whereAij,i,jzl,...,narenxn
A, o Ay,

matrices. Let I' be the matrix obtained from G by
multiplying from the left a row by the n x n matrix
D and then adding it to another row, or by multi-
plying from the right a column of G by the matrix
D and then adding it to another column of G. Then
detG = detI.

Theorem 1. Let X be a complex Banach space,
on

A:X—>X an operator from (3) with finite dimen-
sional kernel z = (zy, ..., 2,,) which is a basis of ker A,
and let A be a correct restriction of A defined by

D(4)={ueD(A4):0(u)=0}, ©)

the components of the functional vectors
@D =col (P, ..., P,), ¥=col (Y, ..., ¥)) and F =
=col (Fy, ..., F,) belong to X™1 and respectively.

Suppose also that @, ..., @, biorthogonal to z,,
... Z,, and that the components of vector g =(gy, ...,
g,) € X" are linearly independent and Nisam x n
matrix. Then:

(i) The operator B defined by

Bu =Au - gF(Au) =,
feX;
D(B) ={u € D(4) : Du) = N¥(v)} 10)

is injective if and only if
detV =det[I, — ¥(z)N]= 0 and
detW = det[I, — F(g)] # 0. (11)

(ii) If B is injective, then B is correct and for all
f € X the unique solution of (10) is given by

u= B‘lf = A‘lf + [A_lg + zNV_l‘I’(A_lgﬂ X

xW‘lF(f)+zNV_1‘~I’(A_1f). 12)

Proof: (i). Let detW = 0, detV # 0 and u € kerB.
Then Bu=Au- gF(Au)=0, ®u)=N¥Y(@w) and
[I, - F(@IFAw) =0, D@ — zN¥w)=0. The last
equation, since (9), implies u—-zN¥(u)e CD(A)
From [I, - F(g)]JF(Au)=0, since detW =0, fol-
lows F(Au)=0. Then Bu=Au=0 which yelds
A(u —zN‘I’(u)) =0 and so u=zNW¥w). Then
Y(w) =¥Y@N¥Yw) or [I, - ¥@N]¥w)=0. The
last, since detV =0 implies ¥(u) =0 and so from
u=zN¥(u) we get u=0, i. e. kerB={0} and B is an
injective operator.

Conversely. Let detV =0. Then there exists a
vector ¢ = col (¢4, ..., ¢,) = 0 such that Ve = 0.

Consider the element uy=zNc=#0, otherwise
Nc=0 and from [I, — ¥(z)N]Jc=0 follows ¢=0,
which contradicts the hypothesis c¢#0. Note
that u, € D(B), since ®(u,)=Nec, ¥(u,) =¥ (z)Nc,
D(uy) — N¥(ujy) = Ne — N¥(z)Ne = N[I, —¥(z)N]c =
=NVe =0. Itisevident that u, € kerB. Sou, € kerB.
Hence ker B # {0} and B is not injective. Let now
detV = 0, but detW = 0. Then there exists a vector
¢ =col(cy, ..., ¢;) # 0 such that We = 0. Note that ge# 0
because of g4, ..., g, is alinearly independent set and

that the element uj = [A’lg + zNV’l‘{’(A’lg)}c #0,

otherwise g = 0. For u, we obtain
g = [A*lg ; zNV’l‘I‘(A’lg)}c £0,
®(up)~N¥(ug) =NV '¥(A"g)e-N¥(Ag)e-
~N¥(z)NV'¥( A g)e-
=N[1, —‘I’(z)N]V‘l‘P(A_lg)c—N‘I‘(A_lg)c -

~

:N‘I‘(A_lg)c—N‘I’( ‘1g)c=0,

Buo =Au0 —gF(AuO):
:gc—gF(g)c:g[In—F(g)]c:ch:gO:O.
So ug € kerB. Consequently kerB #{0} and B

is not injective. Hence B is injective if and only if
detV = 0,detW = 0. The statement (i) holds.
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(ii) Let detW %0 and detV #0. By statement
(i), the operator B is injective. Since z € [ker A]™,
®(z) =1, the problem (10) is written as

Bu=A(@u — zN¥@w) — gF(Au) =T,
feX;
DB) ={u € D(QA) : P(u — zN¥Y@w)=0}. (@13)
Then, applying Equation (9) and relation
Bu=A(u-zN¥(u))-gF(Au)=f  we  obtain
u-2N¥(u)eD(A), Bu=A(u-2N¥(u))-gF(Au)=f
and for every u € D(B), f € X using (10), (13) we ob-
tain

|:In _F(g
F(Au
u—-zN¥(u
W(u)-¥(z)N¥(u)=

)JF(Au)=F(f),

)=WF(f),

:A_lgF(Au)+A_1f,

g|F (Au)+‘I—'(A_1f),
~¥(47),

\P(u)=V‘1[\P(A‘1g W‘lF(f) ( )]

u=Blf=A"

V\_/

¥(4™
(1, - ¥(2)N]¥(u) =¥ (AW

f+ A‘lgW_lF(f) +
+2NV! [\P(A’lg)W’lF(f)+‘P(A’1f)}.

From the last equation for every f € X follows
the unique solution (12) of (10). Because f in (12) is
arbitrary, we obtain R(B)=X. Since the operator
A7! and the functionals F, ., F,Y, .. ¥, are
bounded, from (12) follows the boundedness of B71.
Hence, the operator B is correct if and only if (11)
holds and the unique solution of (10) is given by (12).
The theorem is proved.

From the previous theorem for g=0 follows
the next corollary which is useful for solving some
classes of differential equations with nonlocal
boundary conditions.

Corollary 1. Let a complex Banach space X, the
operators A, A, the vector z and functional vectors
®, ¥ and the matrix N be defined as in Theorem 1.
Then:

(i) The operator B defined by

Bu=Au=f,
feX;
D(B) ={u € D(4) : ®(u)=NW¥(w)} (14)
is correct if and only if detV = det[I, — ¥(z)N] = 0 and
for all f € X the unique solution of (14) is given by

u=Blf=Alf +zNV‘1qJ(A‘1f). (15)

Theorem 2. Let a Banach space X, the vectors z, ®@,
¥, F, the operators A, A be defined as in Theorem 1
and the operator B;: X — X by

Byu =A% — qF(Au) — gF(A%u) = f; (16)
D(B,) = {u € D(A2) : D)= N¥(),
®(Au) = DF(Au) + NP(Au)). 17

Suppose also that the vectors q and g are linear-
ly independent, q = (¢;, ..., q,)), €= (€15 .., &) € X",
and D, N are m x n matrices. Then:

(1) The operator B, corresponding to the problem
(16), (17) is injective if and only if

detL =
0, FzN K -Fi'g)
ot V —T(A_lz)N K —‘-P(A_zg) Lo, (18)
. v K, —\P(A‘lg
n 0, Flq) W
where

K; =1, -F(z)D-F(A'q), Ky =¥(2)D+¥(Aq),
K :\P(A‘lz)D+\P(A‘2q),
W=1,- F(g), V=1,- ¥@N. (19)

(ii) If the operator B, is injective, then it is cor-
rect and the unique solution of (16), (17) is given by

u=B{lf=A2f+
+(zN, A_lzN, A lzD+ A_zq, A_zg)x
«Leol F(A7'7), w(A4727), w(47f), (7). 20)

Proof: (i) Let detL # 0. Since ®(z) =1, the rela-
tions (17) can be represented as

®u - zNYw) =0,
®(Au - zDF(Au) — zN¥(Au) =0,

which taking into account (9) imply
u-zN¥(u)eD(A); @1)
Au-7DF(Au)-2N¥(Au)eD(4). (@)

Then, since z € [kerA]™, AcA and A is cor-
rect, from (16) we obtain

A(Au - z[DF(Au) + N‘I’(Au)}) -

- qF (Au)-gF(A%u)-7,

NeB, 2018 N\
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Au—z[DF Au)+N\P(Au)] ~ A qF(Au)-

teF(4%)=4
Au- zw<u>> A DF (40 + N ()]
~A7qF (Au)- A7'gF(A%u)= A7,
u—zN¥ (u)- A™'2[ DF(Au)+N¥(Au)]-
~A%qF (Au)- A%gF(A%u)= A7,
Then taking into account (16) we get
A%y = qF(Au) + gF(A2u) + f,
Au =2 DF(Au)+N¥(Au)]+
+A_1qF(Au)+A_1gF(A2u)+[l_lf,
u=2N¥(u)+ A '2N¥(Au)+
+ (A’lzD + A’2q)F(Au) + A’ng(Azu) +A72f. (23)

Further acting by functionals F and ¥ we get the
next system

F(Au)=F(z) DF(Au)+N¥(Au)]+
+F(Aq)F(Au)+F(A g |F(A%)+F(A7'),
¥ () = ¥(2)NP (u) + ¥ A2 NP (Au) +
+[W(A*lz)D+W(A*2q)}F(Au)+
+'1/(A*2g F(Azu)+‘{’([f2f),
¥(Au)="¥(z) DF(Au)+N¥(Au) ]|+
+\I’(A_lq)F(Au)+‘I‘(A_1g)F(A2u)+‘P(A_1f),

F(A%u) = F(q)F(Au) + F(g)F(A2u) + F(f), or
—F(z)N‘I‘(Au)+[In —F(z)D—F(A_lq)}F(Au)—
—F(A‘lg)F(Azu)=F(A‘1f),

V() -¥(A'2)NY (Au)-

. [‘I—’(A_IZ)D+‘P(A_2q)]F(Au)—
(

:t>>

V¥(Au [‘I’( )D+ (4! }F(Au)—
- \P(A‘lg)F(Azu)=\P(A‘1f),
- F(@F(Auw) + [, - F@IF(A%u) = F(f).

Using the notations (19) from the above equa-
tions we get the system

X (Au) (24)

i
Flat “‘L

Let u € kerB;. Then in the systems (23), (24) /=0
and from (24) we get Lcol(W(u), P(Au), F(Au), F(A2u)) =
=0, which since detL # 0, yields W(u)=Y(Au)=
=F(Auw) = F(42u) = 0. Substitution of these values
into (16), (17) imply Byu = A%u = 0, ®(u) = ®(Au) = 0.

Taking into account (9) we acquire u e@(A2) and

Blu=A2u=0. By hypothesis A is correct and so
u = 0. Thus ker B; = {0} and B, is injective.

Conversely. Let detL =0. Then there exists a
vector ¢ = col(cy, ¢y, C3, €4), Where ¢; = col(c;q, ..., C;p)»
i=1, ..., 4 such that ¢ # 0 and Le¢ = 0, which since
(24) yields

~F(z)Ney +Kjeg - F(A‘lg)c4 -0;  (25)
Ve, —W(A*lz)ch ~Kjes —'11(1&*2;;)(:4 =0; (26)
Ve, —Kyes —\P(A‘lg)c4 =0; @7
-F(q)c3 + We, =0. (28)

Consider the element
ug =zNey + A~'2(Ney +Deg )+ A2 (qeg +gey ). (29)

Note that u, # 0, otherwise because of the
linear independence of the vectors ¢, g, z and

D(A)NkerA={0} [18], we get Ne,=Ne,=cy=
=¢,=0. Then from (27) follows that ¢,=0 and
from (26) we obtain ¢; =0. Thus ¢;=0, i=1, ..., 4
and ¢=0. But the last contradicts the hypothe-
sis ¢# 0. So u,# 0. From (29), since ®(z)=1,,

K3 = ‘I’(A_lz)D+‘I’(A_2q) and (26) we get
ALLO = Z(NCZ + DC3 ) + A_l (qc3 +8¢Cy ),
A2y =qceg + gey,
®(ug) - N¥(ug ) = Ney - N¥(2)Ney ~N¥(A'2)x

x (Neg +Dc3)—N‘I’(A_2q)C3 —N‘I’(A_2g)C4 =

18 7 VHOOPMALIMOHHO-YMNPABASIOLLIVIE CUCTEMBI
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:N[Vcl (4712 Ne, - Kses —T(A*g)cd _
~NO=0.

Then ®(u,) = N¥(u,) and so u satisfies the first
boundary condition (17). We will show, using (27)
and (25), that u satisfies the second boundary con-
dition (17)

®(Aug ) - DF (Aug )~ N¥(Aug) = Ney + Deg -
- DF(z)(Ney + Deg )~ DF( 4 )es ~DF( A g e, -
- N¥(2)(Nea + Deg ) -N¥( A g e ~N¥(A"g)e, -
- N[Vc2 ~Kyes —‘I’(A_lg)c4}+

+D[—F(z)Nc2 +Kyey —F(A’lg)cd ~N0+D0=0,

where K, K, from (19). So u, € ©(B;). Now, using
(25) and (28) we will show that u € kerB;

Byug = A%y, —qF(AuO)—gF(A2u0 ) = qes +gey —
- ql:F(z)(ch +Deg)+F(A7q)es +F(21_1g)c4}—
~gF(q)c3 -gF(g)ey =
:q[—F(Z)NCz +Kjc3 —F(A_lg)c4]+

+g[—F(q)c3 + Wc4] =q0+g0=0.

So there exists a nonzero element u, e D(B,)
and u, € kerB;. This means that B; is not injec-
tive. Hence the operator B, is injective if and only
if detL = 0.

(ii) Since detL # 0, the system (24) for all f € X
has an unique solution

col(‘I-'(u), ¥ (Au), F(Au), F(A%)):
:L—lcol(F(A‘lf), \11(21‘2f), \P(A‘lf), F(f)) (30)

and the operator B;, by statement (i), is injective.
Substituting (30) into (23) we obtain the unique
solution (20) of the problem (16), (17). In the above
solution an element f is arbitrary. Consequently,
R(B;) = X. Since the operators A_2 A7l and the
functional vectors F and ¥ are bounded from (20)
follows the boundedness of Bl , 1. e. the operator
B, is correct. The theorem is proved.

The next corollary follows from the above the-
orem for q =g =0 and is useful for solving some
classes of differential equations with nonlocal
boundary conditions. .

Corollary 2. Let the operators A, A, the vectors z,
®, ¥, F, V and matrices D, N be defined as in Theo-
rem 2 and the operator B; : X — X be defined by

Biu=A%u=f,
D(By) ={u € D(A?) : ®u) = NY¥(), (31)
®(Au) = DF(Au) + N¥(Auw)}.
Then:

(i) The operator B, corresponding to the problem
(31) is injective if and only if

0, -F(z)N I, -F(z)D
detLy =det| V —\P(A*lz)N —T(A*lz)D #0. (32)
0, A% -¥(z)D

(ii) If the operator B, is injective, then it is cor-
rect and the unique solution of (31) is given by

~

u=Bilf=A" f+(zNA 2N, A zD)
xL}lcoz( (4717), w(4%), ‘P(A‘lf)). 33)

Proof: (i) For g =q =0 from (18) and (19) imme-
diately follows

0, -F(z)N I,-F(z)D 0
i-1 wi i-1
detL=det| ¥ ‘P(A )N ‘F(A Z)D On .(34)
0, v ¥(z)D 0,
0, 0, 0, I

It is evident that detL =detL;. From (20) for
g = q = 0 follows the solution of (31)

u=B{f=A" f+(zN A712N, A12D, 0)

xL—lcol(F(A‘lf), w(A72f), w(A7f), B

It is easy to verify that

). @5)

(2N, A7'2N, 47'2D, 0)x

) (i) w{ie m)
- (zN, AN, A‘lzD) X
« L;lcoz(F(A‘lf), w(A%), ‘I‘(A‘lf)).

Hence, from (35) follows (33).

x L_lcol( (

Examples

In the next example we use the extension method
from Theorem 1.

Example. The multipoint problem for loaded in-
tegro-differential equation on C [0, 1]

NeB, 2018 N\
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u" - 3tf;x u"(x)dx +%(t2 + 1)[u’(

1)-u'(0)]=
=8t2 +2t+12, (36)

u(0)=gu(y2)+u(t), w(0)=2u(1)

is correct and the unique solution of (36) is given by
u(t) = 413 + 2¢2 + 2¢ + 1. 37)

Proof: If we compare (36) with (10), it is nat-
ural to take Au=u"@t), D) ={u<c C2[0, 1]},

x%=c?[0,1], x}=C![0,1], m=n=2, z=(z,
z29)=(1,1), Au=Au,

D(4)={ueD(4):u(0)=u'(0)=0},
Bu:u”—3tI;x u”(x)dx+é(t2 +1)[u'(1)—u’(0)]:
:u”—3tJ‘;x u”(x)dx+%(t2 +1)J-;u"(x)dx,

(B)-

s 5015 e e

Since (5), the operator A, is correct and its
. . -1 t
solution is A f(t):jo(t—x)f(x)dx. Further
comparing (36), (38) with (10), we take g;=3t,
25 =—%(t2 +1), f=8t2+2t+12,

NZ[I{)G 12//1;3} Fl(Au)zj‘;x u'(x)dx,
Fy(Au)= [ u'(x)dx.

Then

R (f)= [y 2 (x)dx, B(f)= [ f(x)dx,
- i {vio
o)

The set z = (1, £) is biorthogonal to (¥;, ®,). From
V@) = u(1/2)| < Hu||(C +|w||c = lul| o1 follows that

¢y eCY = X7 = x4 By analogy ¥,, ¥, e C¥¥,
1

on2f(x)dx S||f||¢

it follows that F € (C[O, 1]* =X". By analogy it is

i=1, 2. Further from |F1(f)|=

proved that F, e X *. We can apply Theorem 1. Now
we calculate

A1 _ t t
A gl(t)—jo(t—x)gl( x)dx= I (t- x3xdx—?

Alg, (t)= —%J‘;(t - x)(x2 + l)dx = —%

; t2(t2+6)
|20 2a |

Further we find Y;(z))=2,(1/2)=1,

W, (z5) =
= 22(1/2) =1/2, \Pz(zl) = 21(1) =

1, Wy(z5) =25(1) = 1.

112 i1
Then ¥(z)= 11 f Further compute ‘I’l(A gl):

=116, Wy(A7g)=1/2, wi(A g )--25/384,
v, (A*lg2 ) =-7/24, then

1/16 —25/384
1/2 -7/24)

\P(A‘lg){
Now we find
(81)= jsx dx=3/4,
j 2? (2% +1)dx =-4/15,
Fz(g1)=j03xdx=3/2,

Fy(g)-= —%j;(ﬂ +1)dx=-2/3.

Then

Flo) - (3/4 ~4/1 5]

32 -2/3 )

Since

wor-ri-{ 4, 4.

v {3 S 2 )
:(5/6 -1/6 j
-1/6 13/18

and detW = 0, detV # 0, the problem (36), by

Theorem 1 (ii), is correct. For f=8t2+ 2t + 12 we
calculate

20 7/
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) . 152(2152 +t+18)
A (t)= jo(t —x)(2x+4)dx g

R (f):j;x2 (827 +2x+12)dx =61/10,
Fy(f)= jol(8x2 +2x+12)dx =47/3.
Then F(f) = col(61/10, 47/3). We also compute
WA= AT,y =19/12,
¥a(ATN=AT =T
Then
W(A7f)=col (19/12,7).

Substitution of these values into (12) yields the
solution to the problem (36)

u(t)= A f+[A g+ 2NV (A g IWIF(f) +

R 152(2152 +t+18)
+zNV g (A7l -

/3 t2(t2+6) +(1 t)[l/ﬁ 1/18J><

N2 0 2/9

[5/6 -1/6 jl[l/IG —25/384]] 1 [100 —16]X

“l-1/6 13a18) (12 -7/24 |49 90 15
61/10 1/6 1/18)(5/6 -1/6 )
X(47/3j+(1’t)[0 2/9}(—1/6 13/18] :

19/12
x[ é j:4t3+2t2+2t+1.

Conclusion

The main results of this paper are Theorems 1
and 2, where the problems Bu = f, B;u = f are solved by
extension method. This method is essentially simpler
and more convenient in the case of quadratic opera-
tor B, = B2. In this case the solvability condition and
a solution of Bju=f can be obtained by application of
the formula for solution of Bu = f twice. The upcoming
Part 2 of this paper will be devoted to decomposition
method for this case. Note that the extension method
is a generalization of direct method which is present-
ed in [30]. The essential ingredient in our approach is
the extension of the main idea in [26].
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HepUM, MEIUIMHCKON HayKu, GUHAHCOB U Apyrux. HaxoxjeHue TOUHBIX PelIeHul KPaeBhIX 3a4a4 ¢ (PpeArossMOBEIME UHTEIPO-audde-
PEeHIMATBHBIMYU YPABHEHUAMHU ABJIAETCA TPYAHON NMPo0seMoii. B GOJIBIINHCTBE CIyUaeB PEIIeHU OJIYUYal0TCA YUCJIEeHHBIMYU METOJaMU.
ITenb: MOMCK HEOOXOAMMBIX U JOCTATOUHBIX YCIOBUH Pa3pemImMOCTy a0CTPAKTHBIX OIIEPATOPHBIX YPABHEHUH M METO[ IIOCTPOEHUS MX
TOYHBIX pelleHuil. Pe3yJpTaTsl: IPeAIOKeH IPAMON METOJ AJIA TOYHOI'O PEIleHUs HEeKOTOPOro KJacca OOBIKHOBEHHBIX nuddepeHIn-
aNbHBIX WU (DPEATrOIbMOBBIX MHTETPO-AUDdepeHIINATBHBIX YPAaBHEHUH ¢ cenapabeIbHbBIMU AAPaMU 1 MHOTOTOYEYHBIMU U MHTETPaJIb-
HBIMM TPAaHUYHBIMHU ycaoBuaAME. MccreoBane! abeTpaKkTHEIe ypaBHeHNA Buia Bu = Au — gF(Au) = f u Bju =A%y - qF(Au) — gF(A%u) =1
C HeJIOKAJbHbIMU I'paHuUHbIMY yeaoBuamu ®(u) = NP (u) u®(u) = N¥(u), ®(Au) = DF(Au) + N¥Y(Au) COOTBETCTBEHHO, TJ€ (, g ABIAIOTCA
BekTOopamu, D, N — marpuniamu, a F, ®, ¥ — QyHKIIMOHAIBHBIMYU BeKTOpaMu. IIpeI0sKeHHBIN METO IPOCT B MCIIOJIb30BAHUY U MOYKET
OBLITH JIETKO MHTEIPUPOBAH B JIIOOYIO CHCTeMY KOMIIbIOTepHOH anre6pnl. MccienoBana KOPPEKTHOCTh ypaBHeHuit suna Bu=fu Bju=f
U X TOUHBIE pelleHus. Bropasa yacTs aToit craThu OyaeT IMOCBSAIIeHa CIydaio, KOorja oneparop B, mMeeT KBaJPaTHUHYIO ()aKTOPU3ALUIO.

KuaroueBsie cioBa — auddepeHIINANTbLHEBIE U (DPEATOIBMOBEI HHTErPo-auddepeHInaIbHble YDABHEHN A, MHOTOTOYEUHBIE I HEJIOKAJIb-
Hble NHTerPaJIbHbIe TPAHUYHbIe YCIOBU A, PA3JIOKeHNe OIlepaTOPOB, KOPPEKTHOCTh OIIePATOPOB, TOUHbIE PEIlleHU .
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