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Introduction

An application in image processing (compres-
sion, masking) led to the search for orthogonal ma-
trices, all of whose elements have modulus 1 and 
which have maximal or high determinant.

Cretan matrices were first discussed, per se, 
during a conference in Crete in 2014. This paper 
follows closely the joint work of  N. A. Balonin, 
Jennifer Seberry and M. B. Sergeev [1–3].

The orders 4t (Hadamard), 4t – 1 (Mersenne), 
4t – 2 (Weighing) are discussed in [4–6]. This pres-
ent work emphasizes the 4t + 1 (Fermat type) or-
ders with real elements 1. Cretan matrices which 
are complex, based on the roots of unity or are just 
required to have at least one 1 are mentioned.

Preliminary Definitions

The absolute value of the determinant of any ma-
trix is not altered by 1) interchanging any two rows, 
2) interchanging any two columns, and/or 3) multi-
plying any row/or column by –1. These equivalence 
operations are called Hadamard equivalence opera-
tions. So the absolute value of the determinant of 
any matrix is not altered by the use of Hadamard 
equivalence operation.

Write In for the identity matrix of order n, J 
for the matrix of all 1’s and let  be a constant. An 
orthogonal matrix, S, of order n, is square, has 
real entries and satisfies SST  In. The core of a 
matrix is formed by removing the first row and 
column.

A Cretan matrix, S, of order n has entries with 
modulus 1 and at least one 1 per row and column. 
It satisfies SST  In and so it is an orthogonal ma-
trix. A Cretan(n; ; ) matrix, or CM(n;; ) has 
levels or values for its entries [1].

An Hadamard matrix of order n has entries ±1 
and satisfies HHT  nIn  for n  1, 2, 4t, t > 0 an 
integer. Any Hadamard matrix can be put into nor-
malized form, that is having the first row and col-
umn all plus 1s using Hadamard equivalence opera-
tions: that is it can be written with a core. A regular 
Hadamard matrix of order 4m2 has 2m2 ± m ele-
ments 1 and 2m2 ∓ m elements –1 in each row and 
column (see [7, 8]).

Hadamard matrices and weighing matrices are 
well known orthogonal matrices. We refer to [2, 
7–10] for more details and other definitions. The 
reader is pointed to [11–13] for details of general-
ized Hadamard matrices, Butson — Hadamard ma-
trices and generalized weighing matrices.

For the purposes of this paper we will consider 
an SBIBD(v, k, ), B, to be a vv matrix, with en-
tries 0 and 1, k ones per row and column, and the 
inner product of distinct pairs of rows and/or 
columns . This is called the incidence matrix of 
the SBIBD. For these matrices (v – 1)  k(k – 1),

BBT  (k – )I + J and  
1

2det .
v

k k


 B

For every SBIBD(v, k, ) there is a comple men-
tary SBIBD(v, v – k, v – 2k + ). One can be made 
from the other by interchanging the 0’s of one with 
the 1’s of the other. The usual SBIBD convention 
that v > 2k and k > 2is followed.

We now define our important concepts the orthog-
onality equation, the radius equation(s), the charac-
teristic equation(s) and the weight of our matrices.

Definition 1 (orthogonality equation, radius 
equation(s), characteristic equation(s), weight). 
Consider the matrix S  (sij) of order n comprising 
the variables x1, x2, …, x.

The matrix orthogonality equation

STS  SST  In                          (1)
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yields two types of equations: the n equations 
which arise from taking the inner product of 
each row/column with itself (which leads to the 
diagonal elements of In being ) are called 
radius equation(s), g(x1, x2, …,  x)  , and the 
n2 – n equations,  f(x1,  x2, …, x)  0, which arise 
from taking inner products of distinct rows of S 
(which leads to the zero off diagonal elements of 
In are called characteristic equation(s)). Cretan 
matrices must satisfy the three equations: the 
orthogonality equation (1), the radius equation and 
the characteristic equation(s).

Notation: We use CM(n; ; ; det(optional); 
(t1, t2, ..., t)), or just CM(n; ; ), where t1, t2, ..., t are 
the possible values (or levels) of the elements in CM.

Inequalities

Some inequalities are known for matrices which 
have real entries 1. Hadamard matrices, H  (hij), 
which are orthogonal and with entries ±1 satisfy 
the equality of Hadamard’s inequality (2) [9]

  2

11

Tdet ,
n n

ij
ji

h


 HH                          (2)

have determinant 2 .
n

n  Further Barba [14] show-
ed that for matrices, B, of order n whose entries 
are ±1:

 
1

22 1 1det
n

n n


  B  

or asymptotically  20 858. .

n

n

For n  9 Barba’s inequality gives
417 8 

 16 888.24. The Hadamard inequality gives 19 683 
for the bound on the determinant of the ±1 matrix 
of order 9. So the Barba bound is better for odd or-
ders. We thank Professor Christos Koukouvinos 
for pointing out to us that the literature, see Ehlich 
and Zeller, [15], yields a ±1 matrix of order 9 with 
determinant 14 336. These bounds have not been 
met for n  9.

Koukouvinos also pointed out that in Raghavarao 
[16] a ±1 matrix of order 13 with determinant 
14 929 920  1.49  107 is given. This is the same value 
given for n  13 given by Barba’s inequality. The Ha-
damard inequality gives 1.74  107 for the bound on 
the determinant of the ±1 matrix of order 13.

These bounds have been significantly improved

by Brent and Osborn [17] to give  
 1

21 .

n

n



 

Wojtas [18] showed that for matrices, B, whose 
entries are ±1, of order n  2 (mod 4) we have

  
2

22 1 2det

n

n n



  B  

or asymptotically  20 736. .

n

n

This gives a determinant bound 73 728 for or-
der 10 whereas the weighing matrix of order 10 has 
determinant 95  59 049.

We observe that the determinant of a CM(n; ; 

; det) is always 2 .
n


Hence we can rewrite the known inequalities of 

this subsection noting that only the Hadamard in 
equality applies generally for elements with modu-
lus 1. Thus we have:

Theorem 1. Hadamard — Cretan Inequality. 
The radius of a Cretan matrix of order n is n.

Two Trivial Cretan(n) Families

The next two families are included for complete-
ness.

The Basic Family
Lemma 1. Consider C  aI + b(J – I) of order n, a, b 

variables. This gives a 
 

 2
4 1

2 1
2

; ;
n

n
n

  
  

CM  matrix

of order n, i.e. a 
 

 2
4 1 2

2 1 1
22

; ; ; det; , .
n

n
nn

         
CM

Proof. Writing C with a on the diagonal and oth-
er elements b, the radius and characteristic equa-
tions become

a2 + (n – 1)b2   and 2a + (n – 2)b  0.

Hence with a  1 and 
2
2

b
n





 we have

 
 2
4 1

1
2

n

n


 


 for the required CM(n) matrix.

Remark 1. For n  7, 9, 11, 13 this gives

24 32 40
1 1 1

25 49 81
, ,  and 

48
1

121
 respectively. These

determinants are very small. However they do give 
a CM(n; 2) for all integers n > 0.

Known Families
The following results may be found in [19] and [6].
Proposition 1. [Cretan(4t)]. There is a Cretan(4t; 

2; 4t) for every integer 4t for which there exists an 
Hadamard matrix.

Proposition 2. [Cretan(4t – 1)]. There 
are Cretan(4t – 1; 2; ), 4 1t t    and

 
 

3

2

2 2 2 1

1

t t t t t

t

  



 for every integer 4t for 

which there exists an Hadamard matrix.
The next two results are easy for the knowled-

gable reader and merely mentioned here.
Proposition 3. [Cretan(4t – 2)]. There are 

Cretan(4t – 2; 3; k) whenever there is a W(4t – 2, k) 
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weighing matrix. For k  4t – 3, the sum of two 
squares, and a W(4t – 2,4t – 3) is known, the com-
plex Cretan matrix CM(4t – 2; 3; 4t – 2) has ele-
ments 1,i   1 or –1.

Proposition 4. [Cretan(np)]. There are complex 
Cretan(np; p; n), when ever there exists a generalized 
Hadamard matrix based on the p th roots of unity.

The Additive Families
We will illustrate this construction using two 

Cretan matrices to give a Cretan matrix whose or-
der is the sum of their orders. This shows how many 
possible matrices we might find for any n but again 
all the determinants are small.

Lemma 2. Let A and B be CM(n1; 3; 1) and 
CM(n2; 3; 2) respectively. Then A Å B given by

0
0
 
 
 

A
B

is a CM(n1 + n2; 4; ) matrix of order n1 + n2 with 
  min(1,2). (Note it does not have one 1 per row 
and column.)

Remark 2. We note using smaller CM(ni; ; i) 
gives many inequivalent CM(n; ; ) for any order 

iin n  but the elements of all but the smallest 
sub matrix will not contribute 1 to the resulting 
Cretan matrix.

Now with n  n1 + n2 for 21  4 + 17, 5 + 16, 
6 + 15, 7 + 14, 8 + 13, 9 + 12, 10 + 11 plus other 
combinations, the sub matrices of orders n1 and n2 
contribute differently to  and . This means

Proposition 5. There is a Cretan(n; ; ) for every 
integer n.

In the section on Kronecker product of Cretan 
matrices we explore the same Proposition 5 for 
more interesting .

Constructions for Cretan(4t + 1; ) Matrices

We now describe a number of constructions for 
Cretan(4t + 1) matrices.

Constructions using SBIBD
 2-level Cretan(4t + 1) matrices via 

SBIBD(v  4t + 1, k, )
The following Theorem is a special case of the 

construction for 2-level Cretan(v  4t + 1) given in 
[6]. It also yields a valid CM(37; 2).

Theorem 2 [6]. Let S be a CM(v  4t + 1; 2; ; 
(a, b)) based on SBIBD(v  4t + 1, k, ) then a  1, 

 
2

k k
b

v k k

  


 
 and   ka2 + (v – k)b2, provi- 

ded b  1.
Example 1. Using the La Jolla Repository http://

www.ccrwest.org/ds.html of difference sets we ob-
tain an SBIBD(37, 9, 2). Using Theorem 2 we obtain 
CM(37; 2; 12.325; (1, 0.345)) and CM(37; 2; 9.485; 

(1, 0.132)). The complementary SBIBD(37, 28, 21) 
does not give any Cretan matrix as bis 1.

We especially note the (45, 12, 3) difference set, 

where the occurrence of the 
1

45 2 20
4

; ;Cretan 
 
 

 

matrix and the 
1

45 2 14
16

; ;Cretan 
 
 

matrices both 

arise from the SBIBD(45, 12, 3): the complementary 
SBIBD(45, 33, 24) does not yield any Cretan matrix.

Example 2. Orthogonal matrices of or-
ders 13 and 21 may be constructed by us-
ing the SBIBD(13, 4, 1) and SBIBD(21, 5, 1)  

given in [20]. 
3 3

13 2 9 60 1
6

; ; ; ; ,
  
      

CM  and 

1
21 2 10 1

6
; ; ; ,

    
  

CM  are given in Fig. 1, a, b.

All the examples of SBIBD(4t + 1, k, ) that we 
have given from the La Jolla Repository have been 
constructed using difference sets. Most of those 
we give arise from Singer difference sets and fi-
nite geometries: these SBIBD((pn+1 – 1)/(p – 1), 
(pn – 1)/(p – 1), (pn–1 – 1)/(p – 1)) difference sets 
are denoted as PG(n, p). The bi-quadratic type con-
structions are due to Marshall Hall [21]. There are 
many SBIBD constructed without using differen-
ce sets.

 Bordered Constructions
We do not elaborate on the next theorem here but 

note it gives many Cretan matrices CM(v + 1).
Theorem 3. The matrix C below can be used to 

construct many CM(v + 1; ; ) with borders by re-
placing the matrix B by an SBIBD(v, k, ).

When a matrix C is written in the following 
form

x s s

s

s

 
 
 
 
 
 

C
B


  

  
  

B is said to be the core of C and the s’s are the 
borders of B in C. C is said to be in bordered form. 
The variables s and x can be realized in the cases 
described below.

а)                                                      b)

  Fig. 1. 2-level Cretan matrices of order 13 and 21: 
a — CM(13; 2; 9.60); b — CM(21; 2; 10)
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 Using Regular Hadamard Matrices
For details and constructions many of the known 

Regular Hadamard Matrices the interested reader 
is referred to [8, 7, 22].

Lemma 3. Let M be a regular Hadamard matrix 
of order 4m2 with 2m2 + m positive elements per row 
and column. Then forming C as follows

1

1
2

s s

s

m
s

 
 
 

  
 
 
  

C
M


  

  

  

gives a Cretan(4n2 + 1; 4; 1) matrix or
2 1 1

4 1 4 1 0 1
2 2

; ; ; , , , .m
m m

    
  

CM

Proof. For C to be a Cretan matrix it must satisfy 
the orthogonality, radius and characteristic equa-
tions. These are

   2 2 2
2 2 2 2

4 1 4 1 4 11 4 4T
m m mm s s m       CC I I I

for the orthogonality equation, giving s  0,   1 
for the radius equation and 0 for the characteristic 
equations.

Hence we have a matrix of order 4m2 + 1 with 

elements 0, 1, 
1

2m
  satisfying the required Cretan 

equations.
Corollary 1. Since there exists a regular (sym-

metric) Hadamard matrix of order 4  22,
22 24 2 ,

22 24 24 2 ,  ..., there is a  2222 1 4 1... ; ;Cretan    
 
for n 

a Fermat number.
Proof. Let S be the regular symmetric Hadamard 

matrix of order 4. Then the Kronecker product

S S ... S

is the required core for the construction in Lemma 3.
Example 3. Purported examples of pure Fermat 

matrices in Fig. 2, a, b for orders 5 and 17: levels a, 
b are white and black colours, the border level s is 
given in grey. However the reader is cautioned that 
though the figures appear to be Cretan matrices 

they are not. They are based on SBIBD, including 
the regular Hadamard matrix SBIBD(4m2, 2m ± m, 
m ± m) and require c  a. We note though that when 
c  a  1 the radius and characteristic equations do 
not give meaningful real solutions.

Example 4. See Fig. 3, a, b for examples of a reg-
ular Hadamard matrix of order 36 and a purported 
new Balonin — Seberry type of 3-level Cretan(37) 
with complex entries that is a orthogonal matrix 
of order 37. A real Cretan(37; 2) does exist from 
Theorem 2 above (see example).

Using Normalized Weighing Matrix Cores

The next construction is not valid in the real 
numbers. However we can allow Cretan matrices 
to have complex elements and choose the diagonal to 
be 1.i  

Lemma 4. Suppose there exists a normalized 
conference matrix, B, of order 4t + 2, that is a 
W(4t + 2, 4t + 1). Then B may be written as

1 1
1

1

.

i 
 
 
 
 
 

B
F


  

  
  

This is a Cretan matrix.
Removing the first row and column of B to study 

the core F is unproductive.

Generalized Hadamard Matrices 
and Generalized Weighing Matrices

We first note that the matrices we study here 
have elements from groups, abelian and non-abeli-
an, (see [11–13, 23, 24] for more information) and 
may be written in additive or multiplicative nota-
tion. The matrices may have real elements, elements 
{1, –1}, elements n  1, elements {1, i, i2  –1}, ele-
ments {1, i, –1, –i, i2  –1}, integer elements {a + ib, 
i2  –1}, n-th roots of unity, the quaternions {1 and i,  
j, k, i2  j2  k2  –1, ijk  –1}, (a + ib) + j(c + id), 
a, b, c, d, integer and i, j, k quaternions or otherwise 
as specified.

  Fig. 3.  Regular Hadamard matrix of order 36 (a) and 
a 3-level Cretan(37) (b)

  Fig. 2. Orthogonal Cretan(Fermat) matrices for 
Fermat numbers 5 (a) and 17 (b)

а)                                                      b)

а)                                                      b)
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We use the notations BT for the transpose of G, 
BH for the group transpose, BC for the complex con-
jugate of BT, BQ for the quaternion conjugate and 
BV for the quaternion conjugate transpose.

In all of these matrices the inner product of 
distinct rows a and b is a – b or ab–1 depending on 
whether the group is written in additive or multipli-
cative form.

 Generalized orthogonality: A generalized 
Hadamard matrix, or difference matrix, GH(gn, 
g), of order h  gn, over a group of order g, has 
the inner product of distinct rows the whole group 
the same number of n times. The inner product is 

 1 1
1 1 ,..., .i j ih jhg g g g   For example

1 1 1 1
1
1
1

;
a b ab

b ab a

ab a b

 
 
 
 
 
 

G  GGH  (group)I4  (Z2  Z2)I

orthogonality is because of the definition of the 
inner product.

 Butson Hadamard matrix [11]

2

2

1 1 1

1

1

;

 
 

   
 

   

B  BBC    3I3, 3  1, 1 +  + 2  0

is said to be a Butson Hadamard matrix. 
Orthogonality depends on the fact that the n nth 
roots of unity add to zero.

 A generalized Hadamard matrix [11, 12, 13], 
GH(np, G), where G is a group of order p, 

can also be written in additive form for 
example:

0 0 0 0 0 0
0 0 1 2 2 1
0 1 0 1 2 2
0 2 1 0 1 2
0 2 2 1 0 1
0 1 2 2 1 0

 
 
 
 
 
 
 
 
  

 is a GH(6, Z3).

 A generalized weighing matrix, W  GW(np, 
G, k) [23], where G is a group of order p, has w non-
zero elements in each column and W is orthogonal 
over G. The following two matrices are additive and 
multiplicative GW(5, Z3), respectively:

0 0 0 0
0 1 2 0
0 1 0 2
0 2 0 1
0 0 2 1

*
*

*
*

*

 
 
 
 
 
 
  

2

2

2

2

0 1 1 1 1

1 0 1

1 0 1

1 1 0

1 1 0

.

 
 

  
 

  
   
   

* is zero but not the zero of the group.
Theorem 4. Any generalized Hadamard matrix 

or generalized weighing matrix is a CM(n; g) over the 
group G, of order g, which may be the roots of unity.

The Kronecker Product of Cretan Matrices

Lemma 5. Suppose A and B are CM(n1; 1; 1) 
and CM(n2; 2; 2) then the Kronecker product of A 
and B written AB is a CM(n1n2; ; 12) where  de-
pends on 1 and2.

  Table 1.  Some Cretan CM(4t + 1), 3  4t + 1  199

From Regular Hadamard Matrices (  1) 5                  17                   37                  65                  101                  145                 197

From Difference Sets (ds)

v k  Existence Difference set Comment

13 4 1 All known PG(2, 3) Unique Hall [28]

21 5 1 All known PG(2, 4) Unique Hall [28]

37 9 2 Exists Biquadratic residue ds Hall [28]

45 12 3 All known — La Jolla [20]

57 8 1 All known PG(2, 7) Unique Hall [28]

73 9 1 All known PG(2, 8) Unique Hall [28]

85 21 5 Exists PG(3, 4) [20]

101 25 6 Exists Biquadratic residue ds Hall [28]

109 28 7 Exists Biquadratic residue ds Hall [28]

121 40 13 Exists PG(4, 3) [20]

133 33 8 Exists — La Jolla [20]

197 49 12 Exists Biquadratic residue ds Hall [28]

Kronecker Product All orders which are the product a known order and of prime power  3 (mod 4)
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  Fig. 4. Core of Russian Fermat Matrix from 
mathscinet.ru

Example 5. From [6, 25] we see that CM(3; 2; 
2.25), CM(7; 2; 5.03) and CM(7; 2; 3.34) exist so 
there exist CM(21; 3; 11.32) and CM(21; 3; 7.52). 
The Hadamard — Cretan bound gives, for n  21, 
radius 21.

From Balonin and Seberry [6] we have that since 

an 
1 3

2 4
, ,

r r
r p p

SBIBD p
  
  
 

 exists for all prime 

powers pr  3 (mod 4) there exist CM(pr; 2;) for all 
these prime powers (see Proposition 2). Hence using 
Kronecker products in the previous theorem and 
writing n as a product of prime powers we have.

Theorem 5. There exists a CM(n; ; ) > 1 for all 
odd orders n, 1 2 ...,i in p p   where  is an order for 
which a Cretan CM(  4t + 1) is known and 1 2 ,...i ip p
are any prime powers 3 (mod 4), for some  and .

Table 1 gives the integers for which  is pres-
ently known. Similar theorems can be obtained for 
all even n.

Remark 3. We note that  depends on the actual 
construction used. Combining CM(n1; 2; 1 : (a, b)) 
and CM(n2; 2; 1 : (a, b)) gives CM(n1n2; 3; 12 : (a

2, 
ab, b2)). General formulae for from CM with dif-
ferent levels are left as an exercise.

The Difference between Cretan(4t + 1; ) 
Matrices and Fermat Matrices

The first few pure Fermat numbers are v  3, 
5, 17, 257, 65 537, 4 294 967 297,... . We note these 
are all 1 (mod 4) and may be constructed us-
ing Corollary 1. Fig. 4 gives an early example of 
a Fermat matrix.

Finding 3-level orthogonal matrices of order 1 
(mod 4) for non-pure Fermat numbers has proved 
challenging. Orders n  9 and n  13 are given 
in [4].

Orders v  2even + 1 called Fermat type matri-
ces, pose an interesting class to study.

Orders 4t + 1, t is odd, are Cretan(4t + 1) — 
matrices; their order is neither a Fermat num-

ber (2 + 1  3, 22 + 1  4 + 1, 
222 1 16 1,    

2222 1 256 1,    ...) nor a Fermat type number 

(2even + 1). Examples of regular Hadamard matrices 
of order 36, giving the first CM(37; 3; 1) matrix 
of order 37 [3] where 37 is not a Fermat number 
or Fermat type number, have been placed at [26]. 
They use regular Hadamard matrices as a core and 
have the same, as any other Hadamard matrix, level 
functions. We call them Cretan(4t + 1) matrices 
and will consider them further in our future 
work.

Matrices of the Cretan(4t + 1) family made 
from Singer difference sets (see [21]) also have or-
ders belonging to the set of numbers 4t + 1, t odd: 
these are different from the three-level matrices of 
Balonin — Sergeev (Fermat) family [27, 19] with or-
ders 4t + 1, t is 1 or even.

Summary

In this paper we have given new constructions 
for CM(4t + 1). These are summarised in Table 1 
for 4t + 1 < 200. Table 2 gives 2-level and 3-level 
CM(4t ± 1).

  Table 2.  Cretan 2-level and 3-level CM(4t ± 1), 3  4t + 1  199

v Method v Method v Method

3 BM [4] + Prop. 2 5 BM [4] 7 BM [4] + Prop. 2

9 BM [4] 11 BM [4] + Prop. 2 13 BM [4]

15 Kronecker 17 — 19 Prop. 2

21 From SBIBD Table 1 23 Prop. 2 25 Kronecker

27 Prop. 2 29 — 31 Prop. 2

33 Kronecker 35 Kronecker 37 —

39 Kronecker 41 — 43 Prop. 2

45 From SBIBD Table 1 47 Prop. 2 49 Kronecker

51 — 53 — 55 Kronecker

57 From SBIBD Table 1 59 Prop. 2 61 —
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Conclusions

Cretan matrices are a very new area of study. 
They have many research lines open: what is the 
minimum number of variables that can be used; 
what are the determinants and radii that can be 
found for Cretan(n; ) matrices; why do the congru-
ence classes of the orders make such a difference 
to the proliferation of Cretan matrices for a given 
order; find the Cretan matrix with maximum and 
minimum determinant for a given order; can one be 
found with fewer levels?

v Method v Method v Method

63 Kronecker 65 Kronecker 67 Prop. 2

69 Kronecker 71 Prop. 2 73 From SBIBD Table 1

75 Kronecker 77 Kronecker 79 Prop. 2

81 Prop. 2 83 — 85 From SBIBD Table 1

87 — 89 — 91 Kronecker

93 Kronecker 95 Kronecker 97 —

99 Kronecker 101 From SBIBD Table 1 103 Prop. 2

105 Kronecker 107 Prop. 2 109 From SBIBD Table 1

111 — 113 — 115 Kronecker

117 Kronecker 119 — 121 From SBIBD Table 1

123 — 125 Kronecker 127 Prop. 2

129 Kronecker 131 Prop. 2 133 From SBIBD Table 1

135 Kronecker 137 — 139 Prop. 2

141 Kronecker 143 — 145 —

147 Kronecker 149 — 151 Prop. 2

153 — 155 Kronecker 157 —

159 — 161 Kronecker 163 Prop. 2

165 Kronecker 167 Prop. 2 169 Kronecker

171 Prop. 2 173 — 175 Kronecker

177 Kronecker 179 Prop. 2 181 —

183 — 185 — 187 —

189 Kronecker 191 Prop. 2 193 —

195 Prop. 2 197 From SBIBD Table 1 199 Prop. 2
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Критские матрицы порядков 4t + 1

Н. А. Балонина,  доктор техн. наук, профессор

Дженнифер Себерриб, PhD, профессор
aСанкт-Петербургский государственный университет аэрокосмического приборостроения, Санкт-Петербург, РФ
бУниверситет Вуллонгонг, Вуллонгонг, Новый Южный Уэльс, Австралия

Цель: дать критские матрицы Cretan(4t + 1) порядков 4t + 1 — ортогональные матрицы с элементами, ограниченными по мо-
дулю 1 (ранее публиковались критские матрицы типа Cretan(4t + 1) определенных порядков 5, 9, 13, 17 и 37). Результаты: при-
ведено неограниченно много новых критских матриц Cretan(4t + 1), конструируемых при помощи регулярных матриц Адама-
ра, симметричного сбалансированного блочного дизайна SBIBD(4t + 1; k; ), взвешенных матриц, обобщенных матриц Адамара 
и произведения Кронекера. Предложено неравенство для радиуса матриц и дана конструкция критской матрицы для каждого 
порядка n5. Практическая значимость: критские матрицы Cretan(4t + 1) имеют непосредственное практическое применение 
к проблемам помехоустойчивого кодирования, сжатия и маскирования видеоинформации.

Ключевые слова — матрицы Адамара, регулярные матрицы Адамара, ортогональные матрицы, симметричный сбалансиро-
ванный блочный дизайн (SBIBD), критские матрицы, взвешенные матрицы, обобщенные матрицы Адамара, 05B20.
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