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Introduction

The Golay pairs (abbreviated as G-pairs, and al-
so known as Golay sequences) have been introduced
in a note of M. Golay [1] published in 1961. Since
then they have been studied by many reseachers
and used in various combinatorial constructions,
in particular for the construction of Hadamard ma-
trices [2] and [3, Ch. 23].

The periodic Golay pairs (PG-pairs) made their
first appearance, under a different name, in a note
of the second author [4] published in 1998. They are
equivalent to Hadamard matrices built from two
circulant blocks (2C-type). It is now known that pe-
riodic Golay pairs exist for infinitely many lengths
for which no ordinary Golay pairs are known [5].

In this paper we complete the picture by defining
the negaperiodic Golay pairs (NG-pairs). These pairs
are equivalent to Hadamard matrices built from two
negacyclic blocks (2N-type). The NG-pairs were first
introduced by N. Ito, under the name of “associated
pairs”, in his paper [6] published in 2000. An intere-
seting observation is that the ordinary Golay pairs are
precisely the pairs which are both PG and NG-pairs.

In an earlier paper [7] Ito proposed a conjecture
which is stronger than the famous Hadamard con-
jecture. It turns out that his conjecture is equiva-
lent to the assertion that the NG-pairs exist for
all even lengths. This is drastically different from
the known facts about ordinary and periodic Golay
pairs. Examples of NG-pairs of even length <92
are listed in [6]. As far as we know, no NG-pairs of
length 94 have been constructed.

We now describe the content of each of the re-
maining sections.

Purpose: In analogy with the ordinary and the periodic Golay pairs, we introduce also the negaperiodic Golay pairs.
(They occurred first, under a different name, in a paper of Ito.) Methods: We investigate the construction of Hadamard (and
weighing) matrices from two negacyclic blocks (2N-type). The Hadamard matrices of 2N-type are equivalent to negaperiodic
Golay pairs. Results: If a Hadamard matrix is also a Toeplitz matrix, we show that it must be either cyclic or negacyclic. We
show that the Turyn multiplication of Golay pairs extends to a more general multiplication: one can multiply Golay pairs of
length g and negaperiodic Golay pairs of length v to obtain negaperiodic Golay pairs of length gv. We show that the Ito’s
conjecture about Hadamard matrices is equivalent to the conjecture that negaperiodic Golay pairs exist for all even lengths.
Practical relevance: Hadamard matrices have direct practical applications to the problems of noise-immune coding and

Keywords — Hadamard Matrices, Cyclic Matrices, Negacyclic Matrices, Periodic Golay Pairs, Negaperiodic Golay Pairs.

k-Toeplitz matrices: We show that if a Hadamard
matrix is also a Toeplitz matrix, then it must be cy-
clic or negacyclic. As cyclic Hadamard matrices be-
yond order 4 are not likely to exist, we conjecture
that the same holds true for negacyclic Hadamard
matrices beyond order 2. We have verified the lat-
ter conjecture for orders <40. As a substitute for
Ito’s conjecture we propose the weaker conjecture
in which the two negacyclic blocks are replaced by
Toeplitz matrices.

Three kind of Golay pairs: We define negaperi-
odic autocorrelation function (NAF) and NG-pairs.
These are binary sequences of the same length v
whose NAFs add up to zero. The length v must be
an even integer or 1. For the sake of comparisson
we recall some facts about ordinary and PG-pairs.
We show that the Turyn multiplication of G-pairs
extends to give a multiplication of G-pairs and NG-
pairs. More precisely, one can multiply G-pairs of
length g and NG-pairs of length v to obtain NG-
pairs of length gv. In particular, one can double
the length of any NG-pair. We also define a natural
equivalence relation for NG-pairs.

Cyclic relative difference families: We intro-
duce a natural bijection ®, from the set of binary
sequences of length v onto the set of v-subsets
of Z,,. We recall the definition of the relative dif-
ference families in the cyclic group Z,, with respect
to the subgroup of order 2. We show that a pair
of binary sequences of length v is an NG-pair if
and only if the ® -images of these sequences form
a relative difference family in Z, . We also show
that Ito’s conjecture, which entails the Hadamard
matrix conjecture, is equivalent to the assertion
that NG-pairs exist for all even lengths v.
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There are only a few known infinite series of NG-
pairs. In the subsequent three sections we treat two
of them, the first and second Paley series. First we
recall the definition of Paley conference matrices
(C-matrices). They have order 1+ g where ¢ is an
odd prime power. Those for ¢ = 1 (mod 4) give rise to
the first Paley series of NG-pairs, with lenth 1 + q.
Those for ¢ = 3 (mod 4) give rise to the second Paley
series of NG-pairs, with length (1 + ¢)/2. The main
facts that we use are that all Paley C-matrices of
the same order are equivalent and that each of these
equivalence classes contains a negacyclic C-matrix.

Ito series: We recall that Ito constructed in[7] an
infinite series of relative difference sets in dicyclic
groups. Hence, this gives an infinite series of NG-
pairs to which we refer as the Ito series. However,
we show that the Ito series is contained in the sec-
ond Paley series.

Quasi-Williamson matrices: We recall from [8,
Theorem 2.2] the fact that the existence of Ito rela-
tive difference sets in the dicyclic group of order 8m,
with m odd, is equivalent to the existence of four gen-
eralized Williamson matrices of order m. We coined
the name “quasi-Williamson matrices” for this type
of generalized Williamson matrices. The four quasi-
Williamson matrices have to be circulants but not
necessarily symmetric. However, it is required that
when plugged into the Williamson array they give
a Hadamard matrix of order 4m. The known series
of four Williamson matrices of odd order give rise to
the series of NG-pairs. As an example, we have com-
puted four quasi-Williamson matrices of order 35.
It is not known whether quasi-Williamson matrices of
order 47 exist, and we pose this as an open problem.

Weighing matrices of 2N-type: We apply NG-
pairs to the construction of weighing matrices of
2N-type. For small lengths v we list in Appendi-
ces B, D and E the NG-pairs of the first and second
Paley series and the Ito series, respectively.

k-Toeplitz Hadamard Matrices

We say that a square matrix A= [al]] i, j=0,
1, ..., v—1, is a Toeplitz matrix if a; ;=a,_ 1,1 for
i, j> 0. In particular, we will be 1nterested in two
classes of Toeplitz matrices: cyclic (also known as
circulant) and negacyclic. The cyclic and negacyclic
matrices of order v are polynomials in the cyclic and
negacyclic shift matrix P and N, respectively:

01000
001 00
000 00

0 1 .00
0 1 0 0
0 00 0 0
N=| | ) 1)

000 01
100 00

Definition 1. A k-Toeplitz matrix is a square ma-

trix A partitioned into square blocks Aij, i,j=1, 2,
., k such that each block A;; is a Toeplitz matrix.

As a special case (k = 1), a square Toeplitz matrix is
1-Toeplitz. If each block of a k-Toeplitz matrix is cy-
clic (resp. negacyclic) we say that it is k-cyclic (resp.
k-negacyclic). We abbreviate “k-Toeplitz”, “k-cyclic”,
“k-negacyclic” with kT, kC, EN, respectively.

The k-cyclic Hadamard matrices for k=1, 2,
4, 8 have been studied extensively [1, 2, 9-11].
The k-negacyclic ones also have appeared in the lit-
erature but to much lesser extent [6, 12]. In this ar-
ticle we are interested mostly in kT-type Hadamard
and weighing matrices with 2 =1, 2, 4.

For k=1 it turns out that Toeplitz Hadamard
matrices are necessarily cyclic or negacyeclic.

Proposition 1. IfH = [hij] isa Toeplitz Hadamard
matrix of order v=0 (mod 4), then H is cyclic or
negacyclic.

Proof: Let h; be the (i + 1)th row of H, h; =[A, o,
h; 15 «s By, 1]- As the rows of H are orthogonal to
each other, all dot products of two different rows
are0, hi-h]. =0fori<j.Letje{2,3, ..., v—1}. Then
the equality h,- hjf1 = h;-h;simplifies and, by using
the hypothesis that H is a Toeplitz matrix, we de-
duce that

hO,v—lhO,v—] h1 ()h =2,3,.,v—1. 2)

Since the entries of H belong to {+1, -1}, we have
two cases: hy = hg , yand by g =—hg , 4.

In the former case, from the equations (2) we de-
duce that the equality h 0=l holds forallj=1,
2, ..., v — 1. This means that the matrlx H is cyclic.
Similarly, in the latter case one can show that H is
negacyclic.

There is a conjecture, attributed to Ryser [10,
p. 134], that there exist no cyclic Hadamard matri-
ces of order >4. We conjecture that the negacyclic
analog holds.

Conjecture 1. There are no negacyclic Hadamard
matrices of order > 2.

By using a computer we have verified this con-
jecture for orders <40.

For k=2 we shall focus on two special classes
of kT-Hadamard matrices, namely the 2C- and
2N-Hadamard matrices having the form

A B
H=l pr ,of 3

(XT denotes the transpose of a matrix X.)
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From now on we refer to 2T-, 2C- and 2N-matrices
having the form (3) as matrices of 2T-type, 2C-type
and 2N-type, respectively.

‘We propose the following conjecture.

Conjecture 2. For each even integer v > 0 there
exists a Hadamard matrix of 2T-type and order 2v.

‘We shall see later that the stronger conjecture
below is equivalent to the Ito’s conjecture about
Hadamard matrices (see [7, 8, 13, 14]).

Conjecture 3. For each even integer v > 0 there
exists a Hadamard matrix of 2N-type and order 2v.

Three Kinds of Golay Pairs

Let a = (ay, a;, ..., a,_;) be a sequence of integers
of length v. If each g, € {1} then we say that the se-
quence is binary. If we allow the sequence to have
also 0Os, then we say that it is ternary. One defines
similarly the binary and ternary matrices. We shall
consider a also as a row-vector.

There are three kinds of autocorrelation func-
tions that we attach to an arbitrary sequence a: the
ordinary or nonperiodic (AF), the periodic (PAF),
and negaperiodic (NAF) autocorrelation functions.
They are defined by the formulas

v—k-1

AF,(R)= Y. a;a;,4, k€ Z; )
i=0

PAF,(k) = a-aP:, EkcZ; (5)

NAF,(k) = a-aNk, kcZ, (6)

“'”

where is the dot product. In (4) we use the
convention that g, =0ifi<Oori>wv.
Note that for 0 <k < v we have

PAF, (k) = AF, (k) + AF, (v — k); (7
NAF, (k) = AF,(k) - AF, (v - k). ®)

The cyclic shift and the negacyclic shift of a are
given explicitly by aP = (a,_, a4, a;, ..., @, ) and
aN = (-a,_;, ay, a;, ..., @, ), respectively.

Since NV =-I, we have NAF,(k + v) = -NAF,(k)
for all k. It follows immediately from (8) that

NAF,(v - k) =-NAF,(k), 0<k<v. (9

In particular, if vis even then NAF,(v/2) = 0. We
also mention that a, its reverse sequence and the ne-
gashifted sequence aN all have the same NAF.

If A is the negacyclic matrix with first row a,
then A= Z;:; a;N*. Further, AT is negacyclic with

first row (a, —a,_4, —@,_g, -, —a;) and we have
v-1
AAT = > NAF, (k)N*. (10)
k=0

(Similar properties are valid for cyclic matrices.)

Let us define three kinds of complementarity:
Definition 2. The integer sequences all), a®, ...,
a®, each of length v, are

(i) complementary if Zle AFa(,») (k)=0 for k= 0;

(ii) P-complementary if Z§=1PAFa(i) (k)=0 for
0<k<u;
. ¢
(iii) N-complementary if zi:1 NAFa(i) (k)=0

forO<k<vo.

We now define three kinds of Golay pairs.

Definition 3. A Golay pair (G-pair), periodic
Golay pair (PG-pair), negaperiodic Golay pair
(NG-pair) of length v is a pair (a, b) of binary se-
quences of length v which are complementary,
P-complementary, N-complementary, respectively.
We denote by GP,, PGP, and NGP,, the set of Golay,
periodic Golay and negaperiodic Golay pairs of
length v, respectively.

For instance, the pair a=(1, -1, -1, 1, -1, -1),
b=@1, -1, -1, -1, -1, 1) is an NG-pair. It is well
known that GP, =PGP, =0 whenvisoddandv > 1.
We shall see later that this is also true for NGP,,.

The equations (7) and (8) imply that for each
v >0 we have GP,= PGP, NGP,.

For the definition of equivalence of G-pairs and
of PG-pairs see e.g. [9] and [15], respectively. To
define the equivalence of NG-pairs (a, b) of even
length v, we introduce the elementary transforma-
tions which preserve the set of such pairs:

(i) reverse a or b;

(ii) replace a with aN or b with bN;

(iii) switch a and b;

(iv) for k relatively prime to1 v, replaceaandb Wit{l
v— v—
1-0 and (Zibki(modv))izo
respectively, where z;=1 if ki (mod 2v) <v and
z;=—1 otherwise;

(v) replace a; and b; with —a, and -b,, respectively,
for each odd index i.

We say that two NG-pairs of the same length are
equivalent if one can be transformed to the other by
a finite sequence of elementary transformations.

As an example, we claim that the NG-pairs (a, b)
and (c, d) of length 10:

a= (+, T Ty Ty T +7 T Ty T _)’

the sequences (Ziaki(modv))

b = (+, T T +’ ) +7 ) +, +7 _);
c= (+’ ) +7 ) +7 +’ +a ) +’ _)7
d= (+’ ERE] +, ) +’ ) +1 +1 _);

taken from the Appendices C and D, respectively,
are equivalent. (We write “ + ” and “—“ for 1 and -1,
respectively.) By applying to (¢, d) the elementary
transformation (iv) with £=9, we obtain the
pair (a, d') whered'=(+, -, + —, —, +, + —, —, +).
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After reversing d' and applying the negacyclic
shifts, we can transform d’ to b. This proves our
claim.

Ito [6] gives a list of NG-pairs of length v = 2¢
for all odd integers ¢ < 45. He also points out that
no NG-pair of length 94 is known. Apparently this
assertion remains still valid.

For lengths v <40, the number of equivalence
classes in GP, and their representatives are known
(see e.g. [15]). Very recently, such classification has
been carried out in [9] for PGP, with v < 40.

It is a well-known fact that there is a bijection
from PGP, to the set of 2C-Hadamard matrices of
order 2v. The image of (a, b) € PGP, is the matrix
(3) in which a and b are the first rows of the cir-
culants A and B. The following is an NG-analog of
that result.

Proposition 2. If (a, b) is an NG-pair of length v
then the matrix (3), where A and B are the negacy-
clic blocks with the first rows a and b respectively, is
a 2N-type Hadamard matrix of order 2v. Moreover,
this map is a bijection.

Proof: The formula (10) implies that if (a, b) €
€ NGP,, then the matrix (3) is a 2N-type Hadamard
matrix. The converse also holds.

In view of this proposition we can restate
Conjecture 3 as follows:

Conjecture 4. NGP, #0 for all even v > 0.

Let us recall (see [5]) that there are two non-
equivalent multiplications

GP, x PGP, —> PGP,,. 1)

Interestingly, these two multiplications extend
(by using the same formulas) to two multiplica-
tions

GP, x NGP, > NGP,,. (12)

Consequently, in order to prove Conjecture 4, it
suffices to consider the case when v = 2 (mod 4).

We can generalize the multiplications (11) and
(12) by replacing PG-pairs and NG-pairs with the
periodic complementary ternary (PCT) and nega-
periodic complementary ternary (NCT) pairs, re-

spectively. We denote by PCTP, , and NCTP,, , the
set of PCT-pairs and NCT-pairs of length v and total
weight w, respectively. (The weight is the number of
nonzero terms.)

Proposition 3. The Turyn multiplication of
Golay pairs (see [11]) extends to maps

GP, x PCTP, ,—» PCTP 13)

gu,gw’

GP, x NCTP, ,—> NCTP,, .. (14)

Proof: The two proofs are essentially the
same and we give the proof only for the case of
NCT-pairs. (This proof is similar to the proof of
[6, Proposition 3].) Given an integer sequence
a=(ay, ay, -.., a,_;), we shall represent it by the poly-

nomial a(?)=ay+ a2+ ..+a,2°1 in the vari-
able z. The Turyn multiplication (a, b)(c, d) = (e, f),
where (a, b) € GPg and (¢, d) € GP,, is given by the
formulas

e(2) =%(a(2)+ b(z))c(zg)+
+-(a(2)-b(2)d(z )25 as)

f(z)= %(b(z) - a(Z))c(z_g )ng—g +
+%(a(2)+b(z))d(zg)- (16)

The product (e, f) € GP,,

Now let us assume that (c, d) € NCTP, . We de-
fine the integer sequences e and f of length gv by
the same formulas (15) and (16), respectively. It is
easy to see that e and f are ternary sequences. Since
(a, b) € GP, we have

a(@)a(z) + b(z)b(z 1) = 2g. amn
Since (¢, d) € NCTP, , we have
c(@)c(@” + d(2)d(z)* = w mod (¥ + 1). 18)

This is an identity in the quotient ring
Z[z]/(zV + 1), which is equipped with the involution
“# gending z to z71. A computation shows that

4e(2)e(z ™) = (a(2) + b))(aEz™) + bz Y)c(z9)c(z9) +
+(a(2) - b@)aE™) - b ))d(z*)d(z9) +
+ (@@ + b@)(aE") - b))e(z9)d(29)28 78 +
+ (@) - b@)aE™) + bz ez )d(z 9228
4fRfe™") = (@) - b@)aE™) - bz )ec@@)e(z®) +
+ (@@ + b@E)(az) + bz Y)d(z9)d(z9) +
+(b(2) - a@)(az ) + bz V))e(z €)d(z§)z8 ¢ +
+ (@@ + b@)(b ) - alz V))e(z9)d(z9)z8 4.

By using (17) we obtain that
e(@)e(z™) + f()fz™) = glc(28)c(z78) + d(z8)d(z79)).
It follows from (18) that
c(28)c(z78) + d(z8)d(z %) = w mod (28Y + 1)
and so we have
e()e(z) + f(2)f(zY) = gw mod (28¥ + 1).

We conclude that (e, f) € NCTP,, ,,,

In the special case when g =2 and (a, b) = ((+, -),
(+, 1)) we obtain a map NCTP, , - NCTP,, ,, to
which we refer as multlphcatlon by 2”.
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Cyclic Relative Difference Families

Let us define the map, ®,, from the set of binary
sequences of length v into the set of v-subsets of
the finite cyclic group Z,, of integers modulo 2v.
If a = (ay, a4, ..., a,_;) is a binary sequence then

O @={i:a,=1LU{v+i:a=-1}. 19)

Note that @, is injective and that its image con-
sists of all v-subsets X C Z,, such that i—j= v for
alli,je X.

‘We also need the definition of relative difference
families in Z, . They are relative to the subgroup {0,
v} of order 2.

Definition 4. The subsets X, X, .., Xg of Z,,
form a relative difference family if for each integer
m € Z, \{0, v} the set of triples {(i, j, B):{i, j} € X,
i—j=m (mod 2v)} has fixed cardinality X\, indepen-
dent of m, and there is no such triple if m = v.

Note that the parameter A is uniquely deter-
mined by the obvious equation

S k(i ~1)=20(v-1), (20)

i=1

where k; = |X}| is the cardinality of X,.

Let us now define the equivalence of relative
difference families consisting of two v-subsets X,
Y C Z,,,. First we define five types of elementary
transformations which preserve such families:

(i) replace X or Y with its image by the map
i—>v-1-i(mod 2v);

(ii) replace X or Y with its image by the map
i—i+1 (mod 2v);

(iii) switch X and Y;

(iv) for k relatively prime to 2v, replace X and Y
with their images by the map i—ki (mod 2v);

(v) replace X and Y with their images by the map
which fixes the even integers and sends i > v +i
(mod 2v) if i is odd.

Definition 5. Two relative difference families
(X, Y)and (X', Y') on Z,, are equivalent to each oth-
er if one can be transformed to the other by a finite
sequence of the above elementary transformations.

Let (a, b) be a pair of binary sequences of length
v and let X = ® (a) and Y = @ (b) be the correspond-
ing v-subsets of Z, . We shall see below that (a, b)
is an NG-pair if and only if (X, Y) is a relative dif-
ference family. Moreover, the mapping sending
(a, b)—> (P,a), D, (b)) preserves the equivalence
classes. This follows from the fact that @, com-
mutes with the elementary operations (i—v) defined
for NG-pairs in the previous section and defined
above for relative difference families. For instance,
if a’ is the binary sequence obtained from a by ap-
plying the elementary transformation (i), then the
set @, (a’) is obtained from ® (a) by applying the el-
ementary transformation (i) defined above.

As indicated above, the NG-pairs are closely re-
lated to relative difference families. The following
two propositions make this more precise.

Proposition 4. Let a®), a®, ..., a® be binary se-
quences of length v and let X, X,, ..., X be the sub-
sets of Z,, defined by X;= @ (a®). If X, X,, .., X,
form a relative difference family in Z,,, then the se-
quences a®, a@, ..., a® are N-complementary.

Proof: We identify the group ring of Z, over
the integers with the quotient ring Z[x]/(x2"— 1) of
the polynomial ring Z[x]. The cyclic group Z,, is
identified with the multiplicative group (x) by the
isomorphism sending i — x!. The inversion map
on (x) extends to an involutory automorphism of
Z[x]/(x?v - 1) which we denote by “*”. The subsets X
are now viewed as subsets of (x), and will be identi-
fied with the sum of their elements in Z[x]/(x2" - 1).

Since the X form a relative difference family, we
have

S S
> X X; =Zki+x(1+xv)(x+x2+...+xv_1). (21)
i-1 i-1

The ring of integer negacyclic matrices of order
v is isomorphic to the quotient ring Z[x]/(x? + 1).
It also has an involutory automorphism “*” which
sends x to x 1. Let f: Z[x]/(x2"— 1) - Z[x]/(x? + 1)
be the canonical homomorphism and note that
f(xV) = —1. By applying f to the identity (21) we ob-
tain that

Note that f(X;)= Z? éagi)x] and

v-1
F(X;)f(X;) =X NAF  (j)x'
i=1
It follows that Z NAF () (j)=0 for j=1,
2, .., v—1, i.e., the sequences a(l) a®, ..., a® are

N- complementary

The following partial converse holds.

Proposition 5. Let a=(ay, ay, .., a,) and
b =(by, by, ..., b, ) be an NG-pair. Then the subsets
X =®,(a) and Y = @ (b) form a relative difference
family in Z,,, with parameter A = v.

Proof: We set R=1Z[x]/(x?*-1), RT =Z[x]/
(x*—1) and R~ = Z[x]/(x" + 1). Denote the canoni-
cal image of x € Rin R* and R~ by y and z, respec-
tively. In the proof of Proposition 4 we have defined
the involution “*” in R and R™*. There is also one
in R~ which sends z — 271 = —z"1, These involutions
commute with the canonical homomorphisms f:
R — R and g: R — R'. Note that R is isomorphic to
the direct product Rt x R~.

Since (a, b) is an NG-pair, the elements p,
q € R defined by p=>)a;z' and ¢=) bz' satisfy
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pp* + qq* = 2v. For convenience we identify X with
the sum of its elements in R, and similarly for Y.
Then we have f(X)=p and f(Y) = ¢. It follows that
fXX +YY - 20) =0. Thus XX" + YY"~ 20 belongs
to the kernel of f and, by using the fact that (x¥ + 1)
xV=xV+ 1in R, we obtain an equality

XX +YY' =
=20+ (% + 1)(cy + cgx + .. ¢, 12v ), (22)

where the c; are some integers. Since X = ® (a)
and y’=1, we have gX)=1+y+..+y" L
Similarly, g(Y) = g(X). Note that g(X)* = g(X) and
g(X)2 = vg(X). Hence, by applying g to the equality
(22), we obtain that

20l +y+..+yv )=
=20+ 2(cy+ ¢y + .. + ¢y D).

We deduce that ¢, =0 and ¢;=v for i#0. The
equality (22) now gives

XX+YY =20+ v+ D)(x + x2+ ... + a7,

Hence X and Y indeed form a relative difference
family in Z,, with the parameter A = v.

It was shown in [13, Conjecture 1] that the Ito’s
conjecture is equivalent to the assertion that for
each t>1 there exists a relative difference family
X, X, in the cyclic group Z,, with |X;|=[X,|=2t
and A = 2t. By Propositions 4 and 5 this is in turn
equivalent to Conjecture 4.

Paley C-matrices

A conference matrix (or C-matrix) of order v is a
matrix C of order v whose diagonal entries are 0, the
other entries are =1, and such that CCT = (v - 1),
where I is the identity matrix. There are two well-
known necessary conditions for the existence of
such matrices. First, v must be even. (We exclude
hereafter the trivial case v =1.) Second, if v=2
(mod 4) then v—1 must be the sum of two squares.
For the existence of negacyclic C-matrices of order
v=4 (mod 8) there is another necessary condition
[12], namely that v — 1 = a2 + 2b2 for some integers
a and b.

Two C-matrices are said to be equivalent if they
have the same order and one can be obtained from
the other by applying a finite sequence of the fol-
lowing elementary transformations: multiplication
of a row or a column by -1, and interchanging si-
multaneously two rows and the corresponding two
columns.

If v=1+ q where ¢ is a power of a prime, then
Paley [16] has constructed conference matrices of
order v. His construction employs essentially the
theory of finite fields. Let us recall a general defini-
tion as given in [12]. Denote by V a two-dimensional

vector space over the Galois field GF(q). Choose
any set X of 1+ ¢ pairwise linearly independent
vectors of V. Denote by y the quadratic character
of GF(g). In particular, ¥(0)=0. (If ¢ is a prime,
then y is the classical Legendre symbol.) Then the
matrix

Cx =[x(detE, n)], &neX (23)

associated with X, is a C-matrix of order 1 +g.
If ¢g=1 (mod 4) then y(-1)=1 while when ¢=3
(mod 4) we have y(-1) = -1. Hence, Cy is symmetric
in the former case and skew-symmetric in the
latter case. We refer to Cy as the Paley (conference)
matrix. It is known that all Paley conference
matrices of the same order are equivalent to each
other [17].

In contrast to Conjecture 1, there exist an in-
finite series of negacyclic C-matrices. Indeed, it
is shown in [12, Corollary 7.2] that each Paley
C-matrix is equivalent to a negacyclic C-matrix.

Consequently, the following facts hold.

Proposition 6. Let q be an odd prime power. Then
there exist

(i) a negacyclic conference matrix C of order
1+g;

(i) a 2N-type Hadamard matrix H of order
2(1 +q);

(iii) an NG-pair of length 1 + q.

Proof: In (ii) we can take H to be the matrix (3)
with A=C +1and B=C-1. By Proposition 2, (iii)
is equivalent to (ii). Explicitly, if (0, ¢y, ¢y, ..., cq)
is the first row of C, then the sequences (1, ¢y, ¢y,
s cq) and (-1, ¢, ¢y, s cq) form an NG-pair of
length 1 +gq.

In Appendix A we list the first rows of the nega-
cyclic Paley C-matrices of order v =1+ ¢ < 128.

Let C be a negacyclic conference matrix of order
v with first row (0, ¢y, ¢y, ..., ¢, ;). By a theorem of
Belevitch [12, Theorem 4.1] we have

Cyni= (Weys w 1=1,2, . v/2-1. (24)

One may try to find a counter-example to
Conjecture 1 as follows. Let ¢ = 3 (mod 4) be a prime
power. There exists a negacyclic Paley C-matrix C
of order 1+ g. However, the equations (24) imply
that C is not skew-symmetric. Hence C +1 is not
a Hadamard matrix. On the other hand, we know
that C is equivalent to a skew-symmetric confer-
ence matrix C’, and so C’' + 1 is a Hadamard matrix.
However, C’' + I is not negacyclic. It appears that C
cannot be used to give a negacyclic Hadamard ma-
trix of order 1 +q.

The two cases ¢=1 (mod 4) and g=3 (mod 4)
in Proposition 6 should be considered separately.
Indeed, we shall show in a later section that in the
latter case the assertion (iii) of Proposition 6 can
be made stronger, namely we can replace 1 + g by

1+q)/2.
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The First Paley Series

We say that any NG-pair (a, b) of lengthv=1+g¢
resulting from Proposition 6, with ¢ = 1 (mod 4), be-
longs to the first Paley series. From the proof of
that proposition, we recall that a and b are the same
sequence except that b, = —a,,.

In this section we assume that ¢ is a prime power
and that g =1 (mod 4). We recall Theorem 7.3 of [12].

It is easy to verify that if A is a negacyclic ma-
trix of odd order ¢ and Z the diagonal matrix of or-
der t with the diagonal elements 1, -1, 1, —1, ..., then
the matrix ZAZ is cyclic (and the converse holds).

Proposition 7. Any Paley conference matrix of
orderv=1+ qg=2(mod 4), q a prime power, is equiv-
alent to a conference matrix of 2C-type with sym-
metric circulant blocks.

Let us give an independent and constructive
proof of Proposition 7 in the case of negacyclic con-
ference matrices.

Proof: Let Cbe a negacyclic conference matrix of
order v =2 (mod 4). We shall transform it into the
2N-form, and also into the 2C-form with symmetric
blocks.

First, we split the first row ¢ = (0, ¢y, ¢y, ..., ¢,;)
of C into two pieces a=(0, ¢y, ¢4, ..., ¢, 5) and
b = (c;, c3, ..., ¢,_;)- Onecan easily verify that for each
integer k we have NAF,(2k) = NAF, (k) + NAF (k).
It follows that a and b are N-complementary se-
quences. Let A and B be the negacyclic matrices
with first row a and b, respectively. By plugging
the blocks A and B into the array (3), we obtain
a C-matrix of 2N-type.

Second, we replace A and B with the circulants
ZAZ and ZBZ. The equations (24) imply that the
block ZAZ is symmetric and the first row of ZBZ is
symmetric.

Third, we replace the block ZBZ with ZBZP™
where m = (¢ — 1)/4. Note that ZBZP™ is a symmet-
ric circulant. There is no need to change the block
ZAZ. By plugging the blocks ZAZ and ZBZP™ into
the array (3), we obtain a C-matrix of 2C-type with
symmetric blocks.

Let us give an example. For ¢ = 13 we have v = 14
and m = 3. From the table in Appendix A, the first
rowof Cise=(0, +, + + + + —, — + + — + —, +).
Thus, a=(0, + + —, + —, -)and b=(+, + + —, +,
+, +). The first rows of ZAZ and ZBZ are a’' = (0, —,
+ + + + )andb' = (+ —, +, + +, —, +). Finally, the
first row of the circulant ZBZP™ is b" = (+, +, —, +,
+, —, +). Thus, the block ZBZP™ is also symmetric.
By plugging the symmetric circulants A and B with
first rows a’ and b” into the array (3), we obtain the
desired C-matrix of 2C-type.

In Appendix B, for negacyclic Paley C-matrices
listed in Appendix A and of order v =2 (mod 4), we
list the first rows of the symmetric circulant blocks
computed by the above procedure.

The Second Paley Series

In this section we denote by C a negacyclic
C-matrix of order n=0 (mod 4). For convenience
we set v=n/2. We give a very simple construc-
tion for NG-pairs of length v. In particular we
can take n =1+ g where ¢g=3 (mod 4) is a prime
power. Indeed, as mentioned earlier, we know
that any Paley C-matrix of order 1+ ¢ is equiv-
alent to a negacyclic C-matrix. We point out
that we do not have any other examples of mat-
rices C.

Proposition 8. Let C be a negacyclic C-matrix of
order n=0 (mod 4). If ¢=(0, ¢y, ¢y, ..., €, ;) is the
first row of C, then the sequences a = (1, ¢y, ¢4, ...,
¢, and b=(cy, c3, ..., ¢,_;) form an NG-pair of
length v =n/2.

Proof: For convenience, we set a’'=(0, ¢y, ¢4,
s €, o). Then NAF, (k) + NAF, (k) = NAF,(2k) for
k=1, 2, .., v— 1. Since C is a conference matrix,
it follows from (10) that NAF, (k) =0 for k=1, 2,
.., n — 1. Hence, (a’, b) is an N-complementary pair.
However, this is not an NG-pair because the first
term of a’ is 0.

Let us write a" = (x, ay, ay, ..., a, ;) with a;=cy;
for i=1, 2, ..., v—1 and x an integer variable. We
claim that NAF,.(k) = NAF, (k) for 0 <k <v. Indeed,
we have NAF,.(k) = AF,.(k) — AF,.(v - k) = NAF, (k) +
+ x(a,—-a, ;). By Belevitch’s theorem, we have
a,=a,_, for 0 <k <v and so NAF, (k) = NAF, (k).
Thus our claim is proved.

If we now set x=1 then a”=a and we con-
clude that NAF, (k) = NAF,.(k) for 0 <k <v. Conse-
quently, (a, b) is an NG-pair.

We say that the NG-pairs constructed in this
proposition belong to the second Paley series. We
say that an NG-pair is a Paley NG-pair if it belongs
to the first or the second Paley series.

Out of the 63 odd positive integers ¢ < 125, there
are exactly 18 for which there is no Paley NG-pair of
length v = 2t. Let us list these integers:

23, 29, 39, 43, 47, 59, 65, 67, 73, 81,
89, 93, 101, 103, 107, 109, 113, 119.  (25)

In Appendix C we list the NG-pairs in the
second Paley series obtained from the negacyclic
C-matrices listed in Appendix A with ¢ =3 (mod 4).

Ito Series

There is another series, due to Ito [7], of NG-
pairs of length (1 +¢)/2 when ¢g=3 (mod 4) is
a prime power. However, we will show below that
the NG-pairs in this series belong to the second
Paley series.

For convenience we set t = (1 + ¢)/4 = v/2 and let
p be the prime such that ¢ = p”. The Ito series is de-
rived from the relative difference sets constructed
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by Ito [7]. These relative difference sets R have pa-
rameters (4t, 2, 4t, 2t) and lie in the dicyclic group

Dicg, = (a% =1, b2 =a?, babl=al) (26)

of order 8t. The forbidden subgroup is (b2).

For convenience we identify a subset X C Dicg,
with the sum of its elements in the group-ring
(over Z) of Dicg,. Then we can write R=R; + Ryb
with R, R, C (a). The sets R; and R, form a rela-
tive difference family in the cyclic group (@) (with
the same forbidden subgroup). Let us identify
(@) with Z,, by the isomorphism sending a — 1.
It is obvious that R; and R, are 2t-subsets
of Z,,. By Proposition 4, the binary sequences
X; =@, (Ry) and Xy =, (Ry) form an NG-pair.

We shall now describe a procedure which takes
as input the integer t and a primitive polynomial
f of degree 2n over the prime field GF(p) = Zp, and
gives as output the NG-pair arising from the Ito’s
difference set R in Dicg,. This procedure is based
on the simplification of Ito’s construction due to
B. Schmidt [8, Theorem 3.3].

We construct the Galois field GF(g2) by adjoin-
ing aroot x of fto Z,. As ¢?2—-1=((qg-1)/2)2(q + 1)
and (g — 1)/2 =2t -1 and 2(q + 1) = 8t are relatively
prime, the multiplicative group GF(g2)" is a direct
product of the subgroups U of order (g —1)/2 and
W of order 2(q + 1). Note that U is the subgroup of
squares in GF(¢2)". (Thus we have @ = U for the set
Q) defined in the proof of [8, Theorem 3.3].)

As fis primitive, x generates GF(g2)" and the ele-
ments u = x8! and w = x2t-1 generate U and W, re-

21)/2
spectively. Since x(q )/ =-1, the element o = x2t

satisfies the equation o + o? = 0, i.e., tr(a) = 0 whe-
re tr: GF(q%) — GF(g) is the (relative) trace map.
We set v=2¢ and define two binary sequences
a=(agy, ay, ..., a, y)and b = (b, by, ..., b, ;) of length v.
We declare that a,=1 if and only if tr(cw?) € U,
and declare that b, = 1 if and only if tr(cw? *1) € U.
Then (a, b) € NGP,. Note that a, = -1.

We say that the NG-pairs obtained by this proce-
dure belong to the Ito series. They exist for lengths
v = 2t where ¢ = 4¢ — 1 is a prime power.

For a sequence a = (a, a;, ..., a,_;) we say that it
is quasi-symmetric if a;=a, ;fori=1, 2, .., v—1.
Note that the negacyclic matrix with first row a is
skew-symmetric if and only if a is quasi-symmetric
and a, = 0.

The Ito NG-pairs (a, b) have some additional
symmetries. Namely, a is quasi-symmetric and b is
skew-symmetric. Both assertions follow from the
fact that

tr(ow8t?) = tr(ow™) = a(w i - w9) =
= ow 17+ D(wid — wl) = (-1)tr(ow?).

These symmetry properties were observed by
Ito [7, Proposition 6], as well as the fact that the

2N-type Hadamard matrix constructed from the
NG-pair (—a, b) is skew-Hadamard. (Since the diag-
onal entries of a skew-Hadamard matrix have to be
equal to +1, we replaced a with —a.)

It follows from these symmetry properties that
the negacyclic matrix with first row

0, by, ay, by..., ay, 4, b, 1)

is a conference matrix. This shows that the NG-pair
(—a, b) belongs to the second Paley series.

In Appendix D we list the NG-pairs of length
v=(1+¢q)/2<154 in the Ito series, with ¢=3
(mod 4) a prime power. We have verified directly
that each NG-pair listed in Appendix C is equiva-
lent to the corresponding NG-pair (the one having
the same length, v) in the list of Appendix D.

There exist prime powers ¢ > 1 such that g=1
(mod 4) and 1 + 2¢ is also a prime power. For in-
stance, ¢=5, 9, 13, 29, 41. For such ¢ there exist
NG-pairs (a, b) and (c, d) of length 1 + g which be-
long to the first and the second Paley series, respec-
tively. Then the following question arises: can (a, b)
and (c, d) be equivalent? (We believe that the answer
is negative.)

Quasi-Williamson Matrices

We say that four binary matrices A, B, C, D of
order t are quasi-Williamson matrices if they are
circulants and satisfy the equations

AAT + BBT + CCT + DDT = 441; 27

ABT + CDT = BAT + DCT. (28)

This is the cyclic case of a more general defini-
tion given in [8]. In order to avoid a possible confu-
sion, we have introduced a different name for this
type of matrices. Note that the above two equations
amount to saying that the matrix

A B C D
-B A -D C
-cT pT AT BT
pT _cT BT AT

(29)

is a Hadamard matrix.

The Williamson matrices are the special case
of quasi-Williamson matrices where we require all
four blocks A, B, C, D to be symmetric, in which
case the condition (28) is automatically satisfied.
Let us mention the following two infinite series of
Williamson matrices of order ¢. The first, due to
Turyn, exists in orders ¢t = (1 + q)/2, where g=1
(mod 4) is a prime power. Given a conference matrix
of 2C-type, see Proposition 7, with symmetric cir-
culant blocks, say A and B, then the matrices A +1,
A -1, B, B are four Williamson matrices (this is the
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Turyn series). The second, due to Whiteman, ex-
ists in orders ¢ = p(1 + p)/2, where p=1 (mod 4) is
a prime.

In the rest of this section we assume that ¢ is
odd. Then quasi-Williamson matrices of order ¢ are
equivalent to relative difference sets in Dicg, [8].

Let a, b, ¢, d be the first rows of quasi-William-
son matrices of order ¢. We set z=1 if t=1 (mod 4)
and z =-1 otherwise. We shall describe a proce-
dure which takes as input the quadruple a, b, ¢, d
and gives as output an NG-pair of length v = 2¢t.
It is based on the proof of [8, Theorem 2.1]. The sub-
group G x (x) of the group G x (g, in the mentioned
proof, is cyclic and is identified with Z,,.

By using the rows a and b, we construct a
binary sequence p of length v as follows. Say,
a=(ag @y, .., @, ). We define two subsets a’, a"
of Z, by a’={i:a;=1} and a”" = {i : a; = -1}. We de-
fine similarly the subsets b, b” C Z,.

Fori=0, 1, 2, 3 we define the map ¥;: Z, > Z,,
by the formula

Y,(j) =Jj + t(z( - j) (mod 4)). (30)
It is easy to verify that the set
X =Yy@) U (b)) U ¥y@”) U¥s(b")

lies in the image of the map ®, [see (19)]. Finally,
we set p=d;} (X), which is a binary sequence of
length v.

Similarly, from ¢ and d we construct first a
v-subset Y CZ,, and then the binary sequence
q= (I)f,1 (Y), of length v. Then (p, g) € NGP,,.

We remark that the v-subsets X and Y form
a relative difference family in Z, with parameter
A = v and the forbidden subgroup {0, v}.

The converse is also true: given an NG-pair (a, b)
of length 2¢ we can construct quasi-Williamson ma-
trices A, B, C, D of order t. As an example, we used
the NG-pair of length v = 70 given in Appendix D to
compute four quasi-Williamson matrices A, B, C, D
of order 35. The first rows of these matrices (after
some cyclic shifts) are:

a= [+7 ) +, +7 ) +7 ) +9 +’ +, +7 +7 ) +, +’ +’ )

) +9 +’ Ty Ty Ty +’ Ty Ty Ty Ty T +a ) +, Ty Ty +]’
b=[+’ +7 +) +, +’ Ty Ty T +7_7 +’ +,_7 +, +’ +7_,
+’ +’ ) +’ +’ +’ ) +’ +9 ) +’ Ty Ty T +’ +’ +1 +];
c= [_9 +’ ) +’ +’ ) +’ ) +’ +’ +’ Ty Ty Ty Ty +’ +’ +’
+’ +1 +7 T T +9 +9 ) +, ) +, T Ty T +a +9 _]1
d = [_, +’ +1 T Ty T +9 ) +1 ) +9 +1 T T +, +’ +,
+7 +, +, T Ty Ty T +, +, +s E +, ) +7 +, ) +’ _],

respectively. The blocks A, B, C, D satisfy the
equations (27) and (28), and when plugged into the
array (29) we do get a Hadamard matrix. Moreover,
A is of skew-type, while B is symmetric, and d is the

reverse of ¢. Note also that ABT—BAT = (A - AT)
B#0, and so A, B, C, D are not matrices of
Williamson type according to [2, Definition 3.3].

It is known that Williamson matrices of odd or-
der ¢ exist for ¢t = 23, 29, 39, 43, see e.g. [18]. After
removing these integers, the list (25) reduces to

47, 59, 65, 67, 73, 81, 89, 93, 101,
103, 107, 109, 113, 119. 31

Let us single out the smallest case.

Open Problem. Do quasi-Williamson matrices of
order 47 exist? Equivalently, do NG-pairs of length
94 exist?

The above mentioned facts have been known
since 1999 [8, 6] and apparently no progress has
been made so far in the search for NG-pairs of order
v =2t, for t in the above list. For generalizations
where the cyclic group Z,, is replaced by more gen-
eral finite abelian groups see [14].

Since the known infinite series of NG-pairs are
rather sparse, it is hard to believe that NG-pairs ex-
ist for all even lengths. In other words, in our opin-
ion Ito’s conjecture is likely to be false.

Weighing Matrices of 2N-type

A weighing matrix of order n and weight w (ab-
breviated as W(n, w)) is a matrix W of order n with
entries in {0, =1} such that WWT = wI. In this sec-
tion we discuss the existence of weighing matrices
of 2N-type.

Note that C-matrices of order v are W(v, v-1). It
is known that there are no cyclic W(v, v — 1) forv > 2
[19]. On the other hand there are infinitely many
negacyclic W(v, v— 1). Indeed each Paley C-matrix is
equivalent to a negacyclic C-matrix. It has been con-
jectured[12] that there are no negacyclic C-matrices
of even order v # 1 + ¢, ¢ a prime power. This conjec-
ture has been verified for v < 226. However, there
exist C-matrices of 2N-type whose order v is not of
that form. For instance, they exist for

v =16, 40, 52, 56, 64, 88, 96, 120, 136, 144, 160.

(See part (iii) of the proposition below.)

We have four infinite series of 2N-type weighing
matrices.

Proposition 9. Let q be an odd prime power. Then
there exist weighing matrices of 2N-type:

@) W +g, g

(ii) W(2 + 2¢, 2¢);

(iii) if ¢g=3 (mod 4), W2 +2¢q, 1+ 2q) and
W4 + 4q, 2 + 4q).

Proof: (i) If g=1 (mod 4), this was shown in the
proof of Proposition 7. Otherwise the claim follows
from the fact (proven in the Ito series section), that
there exists an NG-pair (a, b) of length (1 + ¢)/2 with
a quasi-symmetric. Let A and B be the negacyclic
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matrices with first rows a and b. We may assume
that a, =1, then the matrix (3) is skew-Hadamard
of 2N-type. By replacing the diagonal entries with
0Os, we obtain a W(1 + ¢, ¢).

(ii) This follows from (i) because we can “multi-
ply by 2”.

(iii) Let (a, b) be an Ito NG-pair of length
(1 + ¢)/2. By multiplying by 2, we obtain an NG-
pair (a’, b’) of length 1+ ¢ with a’=(1, a”) quasi-
symmetric. Consequently, the pair ((0, a”), b’) is
N-complementary. The corresponding 2N-type ma-
trix (3) is a C-matrix of order 2 + 2¢q. Multiplying by
2 we obtain also an W4 + 4q, 2 + 4q).

This proposition covers all weighing matrices
W@n, 4n—-1) and W@#n, 4n - 2) of 2N-type, for
n < 50 except for

n=9,13, 19, 23, 25, 28, 29, 31, 37, 39, 43, 44,
46, 47, 48, 49
and
n=11, 17, 18, 26, 29, 33, 35, 38, 39, 43, 46, 47, 50,

respectively. We have constructed five of these
matrices:

n a&b

11 [0, T T +1 T Ty Ty Ty T +9 +7 +9 ) +7 +9 ) +7 ) +s
+, +’ _]7 [07 +, Ty Ty Ty Ty +, Ty Ty +’ ) +’ +’ +7 +9 )
T T +a Bl +7 +]

Appendices

13 [0,+,+’_+ ,+’++,+a_’+7+7_,+7+’_7+7+’
+’ +a ) +7 ’ +’ +]’ [+, +7 +7 ) +, T T T +, T T
) +’ +’ +9 ’ +’ +’ Ty +7 +, +7 +’ ) _]

17 [07 T T T +7 T T +, Bl +a T Ty T +a ) +7 +7 +1 )
+’ +’ +9 +9 ) +, +, +, +, +, Ty Ty Ty +’ _], [O’ ) =+
+, +a +’ ) +7 T T T +1 +1 +7 +a BEREE +1 +7 ER] +’
) +9 +’ ) +9 +s +’ +1 ) +’ ) _]

18 [ ,+7 +’ T Ty T +7 T T +, T Ty Ty Ty Ty T +a +’
+1 ) +1 LI +, ) +a T Ty T +’ +1 +, ) +a +’ _]7
[0, +’ +7 T +7 +’ +’ +’ ) +7 Ty Ty T +7 ) +’ +7 +7
) +1 +, +a +, ) +7 +’ +, +7 Bl +, T T +a +’ _]

26 [0, ++H++—-——-+H———+H+H+H+H+H—+
_’_7+’+a_’+’_7 ,_++++ +7+’_5+’+’
+s +s +s +’ T T +1 +1 ) +1 + ] [07 +7 +7 +7
+a +’ T T +a +’ T T +’ E +’ ] +’ +9 +7 T Ty T +’
) +1 +7 Bl +a +7 +a +’ T T +, +7 + +7 ) +, ) +1 +7
) +, +’ +7 ) +’ +’ ) +’ _]'

Multiplication by Golay pairs may be used to con-
struct other series of weighing matrices of 2N-type.

In Appendix E we list weighing matrices W(4n,
4n — 2) of 4C-type for odd n < 21. They can be eas-
ily converted to 4N-type by replacing each circulant
block X of order n with the negacyclic block ZXZ.
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Appendix A. For even integers v =1 + ¢ <128, with ¢ = p" a power of a prime p, we give the first row ¢ of
a negacyclic conference matrix C of order v belonging to the equivalence class of Paley conference matrices.
The algorithm is described in the section on Paley C-matrices, it is based on [12, Corollary 7.2]. We also record
the primitive polynomial f(x) of degree 2n over GF(p) used in the computation.

v f(x); p, g and the first row ¢

4 x2+x+2;p=q=3
[0’+’_’_]

6 x2+x+2;p=qg=5
[0, +, +, +, —, +]

8 x2+x+3;p=q=T

[0’ +’ T Ty T +’ R _]
10 x*+x3+2;p=3,¢g=9
[0, + — — — —, + — + +]
12 x2+x+T;p=qg=11
[01 +9 ) +’ T T +’ +’ Ty Ty T _]
14 x2+x+2;p=q=13
[01 +7 +7 +a +9 +9 T T +7 +, ) +7 ) +]
18 x2+x+3;p=¢q=17
[O’ +7 +7 +, Bl +7 +, +, +s BERE] +7 ) +7 +7 +7 I +]

20 x2+x+2;p=¢g=19

[0’ +, T T Ty Ty T +’ ERE] +, +7 BERE R +a Bl +7 E

NeS, 2005 N\
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24

26

28

30

32

38

42

44

48

50

54

60

62

68

72

74

80

82

84

90

98

12

x2+x+Tp=q=23

[07 +’ T T +1 +’ +7 +7 +’ +, ) +7 +, T Ty T +, ) +, ) +7 +’ ) _]

x4+ x3+x+3;p=5,9q=25

[0, +7 T T T +a +a +7 T Ty Ty Ty Ty T +7 ) +, ) +a +7 ) +a +a R +’ +]

x6+x54+2;p=38,¢=27

[0’ +1 +1 T T +$ T T +1 +’ +7 +, +$ +’ +’ ) +7 ) +a ) +7 +, T T T +$ +’ _]

2+x+3;p=q=29

[0’ +’ +’ ) +’ +7 +7 +’ +a +9 Ty Ty Ty T +a +a Ty T +’ ) +’ +’ ) +, ) +, Ty Ty T +]

x>+x+12;p=¢q=31

[0) +7 ) +7 ) +, +7 +) +7 Ty Ty T +’ +’ Ty Ty T +9 R +7 +, ) +) +7 ) +7 Ty Ty Ty T _]

x2+x+5;p=q=37

[09 +9 +, +a +’ +’ ) +’ ) +a +’ ) +, +a +’ +9 Ty T +9 +, Ty T +’ +1 T +’ Ty Ty T +1 +’ +9 +, +a ) +, ) +]
2+x+12;p=qg=41

[01 +a +’ ) +’ ) +a +’ +’ +, ) +’ T T +’ +a +’ T T T +1 T T T +’ T T +a ERRE] +9 +1 +a +’ ) +’ Ty Ty Ty Ty T +]
x2+x+3;p=q=43

[07 +’ ) +7 ) +a ) +7 +1 T T +, T T +7 ) +, +7 ) +, +, +7 BER] +7 T T T +7 +7 +1 +a T T T +a +a T T T T
_,_7_]

x2+x+13;p=q=47

[09 +’ T T +’ +’ +9 T T +’ +’ +a ) +’ ) +, ) +’ +’ +’ +a ) +’ T T +9 +’ +’ +’ ) +1 Ty Ty Ty Ty Ty Ty T +9 ERE
+a +7 T +7 +$ ) _]

xt+x3+x2+3;p="T,0q=49

[07 +9 Ty Ty T +, +9 ) +a ) +7 Ty Ty T +’ ) +9 Ty T +’ +7 +’ Ty Ty Ty Ty +9 ) +a +7 ) +’ +’ Ty Ty Ty Ty Ty +a Ty T
T T Ty T +a +1 ) +’ +]
x2+x+5,p=q=>53
[0, +, +1 +a +’ +’ ) +a T T T +’ ) +1 +a T T +7 ) +’ ) +a +7 ) +1 +a T T +’ +, T T T +, +1 +a +’ +7 +, BERE

+’ +1 +’ +9 T +1 +’ +, +, T +9 B +]
x2+x+2;p=q=59

[07 +1 T T +1 T T +7 +s T Ty Ty Ty Ty T +s +, +7 ) +1 Bl +1 T T T +7 ) +7 +s ) +9 +’ +1 T T Ty T +, T Ty T
Ty Ty T +9_’_7 +’ ) +9_9 +’ +9_7_’ +’ +9 +9_,_

x2+x+2;p=qg=561

[0) +, +9 +’ +, +) » T +1 Ty Ty Ty +, +9 Ty Ty Ty +’ Ty Ty Ty Ty +9 +’ +, Ty Ty T +) ) +, +) Ty Ty Ty T +, Ty T +7 )
) +a I +1 +a +’ R +1 +’ T T +’ T T Ty T +7 ) +’ I +]

X2+ x+12;p=q=167

[0’ +’ ) +’ +1 ) +7 +, +, +’ R +7 +7 +$ > +7 +’ T Ty Ty Ty T +’ +1 T Ty Ty Ty T +, E +’ +7 ] +1 +1 +7 T T Ty T
+’_, +a_, ) +7 +9_9 +7_1 +’ +’_a_, ) +7_’_,_7 +, ) +7 +’ +, T Ty T

X2+x+1;p=q="T1

[0, +, T T T +7 T T Ty Ty T +, +, +, +7 T T T +, +, T T +a ) +7 ) +1 +7 +, +7 ) +a +a ) +7 +’ +7 Bl +7 +7 +,
Ty Ty T +’ ) +’ +9 +’ +y +, +, Ty T +’ +’ ) +9 +’ ) +’ ERE) +, ) +’ Ty Ty Ty +, ) _]

xX2+x+1l;p=q="173

[07 +1 +1 ERE] +’ ) +9 +9 +’ ) +9 ) +1 ) +, ERE +7 T Ty Ty T +1 ) +, +, +9 ERE] +’ +1 +1 T T Ty T +’ +, ) +’
’ 7+’_a_7+,+a_’+’+7+5 7_,+a_7_’_a+7+’+’+a+7+,+a+7_’+,+5+7+’_,_7+]
2+x+8;p=q="19

[07 +7 Ty T +’ +’ ) +’ ) +7 ) +7 Ty T +7 Ty Ty T +9 Ty Ty Ty T +7 ) +7 +7 Ty Ty Ty Ty +7 ) +7 R +7 +’ +9 Ty T
+, +7_7 +7 +7_a_7_7_a_7 +a Bl +7 +1 T Ty Ty T +,_7 +7 +, +7_9 +, +7 +1 T T Ty Ty Ty Ty Ty T +7 +7_1_
x8+x5+2;p=8,¢q=81

[O’ +1 +, T T +, ) +7 +’ +’ ) +, +’ Bl +’ Bl +1 I +’ +a +’ Bl +1 +7 T T Ty T +1 +7 +3 +’ +’ ) +, +’ B +’ +’ +a +,
T T +7 ) +1 +7 +, T Ty T +a ) +7 T T +9 ) +9 +9 T Ty T +’ T Ty Ty Ty Ty Ty T +9 +’ +1 ) +a +’ +1 +’ T T +]
x2+x+2;p=q=83

[0’ +’ T T +7 ) +7 +’ +9 B +a +s +s T T +7 T T +7 +7 ) +1 +7 ) +, ) +7 ) +s T T +’ +9 B +a T Ty T T T +a Bl
+7 +’ +, +’ ) +9_7 +, +’ +7 +)_7_’ +’ +7 +, +’ +, +7 +9 +7_,_’_7 +7 +7 T Ty T +7 +,_7 +’ +, +7_) +’ +, +7 +7_7_
x2+x+6;p=q=89

[09 +9 +, +a +’ ) +, ) +9 +, +, Ty Ty T +a Ty Ty +’ ) +9 +’ +1 ) +9 +’ +1 Ty T +a +’ ) +, Ty Ty T +a +’ ) +, ) +’
+7 I +’ ) +1 +’ +’ +$ 5 T T Ty Ty T +’ +1 Bl +, +1 +1 +’ BER] +a +, Bl +7 +7 +, T +$ +, +7 +1 T T T +1 BEREE +’
T Ty Ty Ty T +7 ) +]

xX2+x+5p=q=97

[07 +7 +7 +7 +7 +7 ) +s +a Bl +7 +7 ) +s ERE] +1 +1 T T T +, +, ) +7 ) +, T T +, ) +7 +7 +7 ) +, T Ty Ty Ty T
+7 +, +, ) +’ +’ +7 ) +7 +7 +7 ) +’ +’ +7 ) +9 +9 ) +, ) +’ +’ +7 +7 ) +9 +7 +7 +, Ty Ty Ty Ty Ty T +’ +’ ) +7 +)
BERE] +, +1 +a +a T Ty T +7 +7 +’ ) +, I +]
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104

108

110

114

122

128
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x2+x+3;p=g=101

[0, +, +, — ++++—,—,+,—,—,—,——++++++++ T T S
_7_7+7 +++ ++ ++ ,+7+7+7+’ ,+, ’+’+7 7+7+,_7+7+’+,+,_7_,_’+’+9+7_7+,
_7+1_,+ T + +___++ +a_7_7_’+]

x2+x+5p q 103

[07+, ’ + + 1+’_1+’_’_’_,_’+,_7_’_1+’_1+’+a+, ,+1_,_7_’_1_,_7+,+1 7+1+’ ’ ,+’
++ + +++’+’_,_’+’+9_7+’_9_7+1+1+1+1_a+,+,_’_7+7+’+’_9_’+1_9+a_1+y+’+’+s_7
++++ +++ 7+’_’_’_,_,_7_’_,+a+,+’_,_]

x2+x+5; p= =107

[0, +9 ’ + + + +_9 Ty Ty Ty Ty +’ +) +, +’ +7 Ty Ty Ty T +’_7 +’_)_’ ) +’ Ty Ty Ty T +7_7 +7_7 ) +7
+__+7_ +++ _’_a+7_7_a_7+a_7_7+,_$_,+7+a+a_a_,+a+7_a_7_7_7_+ a+,+y+a +a+7
+++ + + +_’_,+’_9+,_’_’_,_’_’_,+a+’_,_

x2+x+6,p q—109
[O+++_—_7+7_’+1+1+7_’+’_’+9_7+7+a+a_7+7+7_’+1_9_7+,+,_1+7+7_’_,_’+7_’+’_’_’+7
+ ++++___7_,_9_7+’+,+,_’+9+7_’+9_7+’_’_’+9_’+,+9+’_,_7+’+’+9+’+7_9+’+7_9_’
7+,+a 5 Ty T 7+,+7+a_7+7+a+’+’+7+7+7_7+7+’+’+,_7+7+, 7+

x2+x+10;p=qg=113
[0’+7+a+7_1_7_1_7+7_1_7+,+’_,+7+,_7+’_,_’_,+,_’+a_,_a___+++++ ++1_,+’_,+7
_,_9_’_’_1+,+’_’_’+’_1_’_’+,_9_9 3 T Ty Ty Ty Ty Ty T 1+,+’ ’ ’+’ 1+,_,_,_,_9_9_’+a+’+9_,
+,_1 +1 +,_1 +1 Bl +’ +1 +’ +, +7_1 +, +, +$ +7_,_1 Bl +’ +1 T T T +1 Bl +1 +1 Bl +]

x4+ x3+8p=11,¢g=121

[0, +7 Ty Ty Ty Ty Ty Ty T +’ +7 ) +’ Ty Ty T +’_7 ) +’ +’ ) +’ Ty T +, +a ) +7 Ty Ty Ty T +’ ) +9_’ Ty Ty T +’
T T T +7 +7 +a +7_7 +7 T T T +7 +1 +’ BERE] +7_, T T +, T T T +a +’_, +7 +a ) +, +7 +s +7_a +7_7_7 +7_7
ERE) +7_7 +, +’ +) +7 +, ) +,_,_’_7_, +7 +)_,_7_,_, +’ +)_7_’ ) +7 Ty Ty Ty T +) +7_7 +1_7 +,_, +7 +]
x2+x+38;p=q=127

[01+’_,_9_9+’_’+,+,_9_,_’+’+,_’_,_,_9+’_’_1_,_’+,_,+1+1+’+,+’ ’+1+’ ,+9+’___,+,+,
+,+,_7+a+1+1_5+$+$+5+$+$+5_1_’+’_’+’_’+’+’_,_7_7+,_1_5+7+7+7+7+7+7 ’+’_,+, ’+’+,
+,_9+,+7+’_1+9_’_’+’_s_’+,+7+’_1_7_’+9_’+a_’_7_7_,+7_7+’+,+7 7+’ 7+’+,_9+’+’_7_7
_7_’+7_9_]

Appendix B. For even integers v =1 + ¢ < 128, with ¢ =1 (mod 4) a prime power, we give a 2C-type confer-
ence matrix of order v with symmetric blocks A and B which belongs to the equivalence class of Paley confer-
ence matrices. The algorithm is described in the section on the first Paley series. Since the blocks A and B are
symmetric circulants of odd order v/2, we record only the first (v + 2)/4 elements of their first rows a and b.

We recall that A + 1, A -1, B, B are four Williamson matrices of order v/2 belonging to the Turyn series.

v first rows of a and b (truncated)
6 [0’ _]7 [_’ +]

10 [0, + -], [- + +]

14 [0,—, + +], [+ + — +]

8 [0,—-,— —+],[- -+ —, +]

26 [O+———+][ ++,+]

30 [0—+ ][,— ,+ =+ + ]

38 [0, ,+ + -, ,+,—,—,—],[,—, -+ ++ -+ -

42 [0,—-,+ -+ +—-—-+++],[-+-———*+—— 1 t]

50 [0,+,——+———+H+H+H+-][-+H+H—-—+H—+—++++]

4 [0, +H+H—-+—--—+--++],[++++-+H+H+H—— -+ — ]

62 [0+ -, ++H+H+H—-+H—-H—-+H*+H+-1L--H--—+H++++—++— ]

74 [0, --HH+H-+t---+t---+-LHH----+t--*+--+ -+t + ]

8 [0,-,-,++H+H+H—-H+H—+H—-—+H+H—-+—-—— ]
[ — + —— —,+,+,— R i e R el |

90 [0, + -+ ————++++H+++—-++—++ -]
+--++---+H+t+t-+—-++—-++H+ -+

98 [O0-,++H+—--+H+H+H--+H--+H+H+H-+H———— -]
[+,—,+,—,+,—|—, y =+ — +, ,+,+,+,+,-|—,—|—, — =+ — ]

102 [O,—,+,————,+,+, e i i o ,+,+,+, e A i

[- — — + - +tH+t---+++H -+ -+ + - +—,—,+,+,+]
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110 [o0—-—-+—---+----HH+H--+-+H+H+H+H--+--]
-++t-++t--+t++t--H-+t+H-+-+-+-— -+

114 [0,-,-,+++H+--+-+-+-—-+H+H+H-+H+---- -]
[+ + ,+,———,+, -+t-—-+-++H-—-+++-—— -+ - — t]

122 [0, + -, +—--+H+H+H+H+H---+H+H-H-H+HHH-— -]
-+t--+++-++H-+H--+H+H-++H+-—-—+—+++ -+ +]

Appendix C. For integers g = 4t — 1, with ¢ = p"” = 3 (mod 4) a power of a prime p, we give the NG-pairs (a, b)
of length v = 2¢ < 64 belonging to the second Paley series. The procedure used to generate this list is described
in the section on the second Paley series.

The sequence a is quasi-symmetric and b is skew-symmetric. We record only the first ¢t + 1 terms of a
and the first ¢ terms of b. If A and B are the negacyclic blocks with first rows a and b, then the matrix (3) is
2N-type skew-Hadamard.

v a & b (truncated)

2 [+’ _]’ [ +]
4 [+a ) _]a [+a _]
6 [+’ T T +]’ [+9 +’ _]

10 [+7 T Ty T T +] [+ ) 7 ]
12 [+ -+ + + - +], [+ -+ + + +]
14 [+ + — -+ + + +], [+ — + — + + +]
16 [+a_7_7+7+’ 7+’ H ][++++ _a+a_]
22 +---+t--+t+t-+ ][++++ -+ - -+ + ]
24 [+7 ) +1 +a I +1 BEREE + + + ] [+ ) +’ +7 +7 +7 +, +’ Bl _]
30 [+’_,+,_1+9_’_’_9+,_1_,_,__++] [+_ 1+9 ’_,+,+a+’+,_,+’+’_]
34 [+’ Bl +1 +’ +, ) +1 Bl +1 T T +, T T Ty T +, +]’ [+7 +7 ) +1 +’ +, +7 +$ T T T +’ T T +7 +, _]
36 [+9 T Ty Ty Ty T +7 +’ ’ +7 ’ +1 +1 +7 +7 ’ +7 +7 +]7 [+’ ) +1 EREE] +, +, T T +1 T Ty T +7 +7 +, T +]
40 [+’ ) +9 Ty Ty Ty T +’ ’ +9 Ty T +’ Ty Ty Ty T +7 +9 _]7 +’ ) +’ +9 +, +7 Ty Ty Ty Ty T +7 +7 ) +7 +9 ) +, _]
42 [+a ) +, +a +a +7 +7 E +, ’ +7 +, +a +a ’ +a LI ] +’ +]7
[+,_7_,+1_7+,_+ ,+,+7____+___’_,_]
52 [+’_’+1_’_,_1_’_+ ’+7+7+7+’___++ ’+’+a+a_,+,+a_],
[+,_9_’+1+9+,_1_,___,+’____+ +_’+9_1_,+’+’_]
54 [+’ ) +1 T Ty T Ty T +$ +7 ’ +7 +, ’ +’ T Ty T T +’ Bl +’ ) +$ EREE _]’
[+, ) +, +, +s BER] +7 +’ +, T Ty Ty Ty Ty Ty T +’ +, ) +7 T T +s +’ ) +]
64 [+ Ty Ty T +9 ) +’ ) +’ - + + + +7 Ty T +9 +, +’ +, +7 +7 +’ ) +7 +’ +’ ) _]’
[+ ++ ,_,+7_’_7_7_’+,+7+,+7+, 7+,_,+7+,_7+7 a+7+7+7_1_7_7+?]

Appendix D. For integers q = 4t — 1, with ¢ = p" =3 (mod 4) a power of a prime p, we give the NG-pairs
(a, b) of length v = 2¢ < 154 belonging to the Ito series. The procedure used to generate this list is described in
the Ito series section. In the list below, for each length v, we record the primitive polynomial f(x) of degree 2n
over GF(p) used in the computation, and the NG-pair (a, b).

In all cases we have a = (+, a’) where the subsequence a’' is symmetric while the whole sequence b is skew-
symmetric. We record only the first ¢t + 1 terms of a and the first ¢ terms of b. If A and B are the negacyclic
blocks with first rows a and b, then the matrix (3) is skew-Hadamard of 2N-type.

Moreover, by multiplying the NG-pair (a, b) by 2, we obtain in the same way a 2N-type skew-Hadamard
matrix of order 1 + q.

v a & b (truncated)

2 x2-x-1;p=q=3
[+ +1, [+]
4 x2-x+3;p=q="7
[+ — +1, [+ +]
6 xX2+x+Tp=qg=11
[+ - + +1, [ — +]
10 x2-x+2;p=¢q=19
[+ — + — + +], [+ + + — -]
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16
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24

30
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40

42

52

54

64

66

70

76

82

106

142

154
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x2—x+T;p=q=23

[+, +a +’ ) +, +’ +]9 [+, ) +, T T _]

xﬁ—x5+2;p—3'q—27

[+a+a+,_1 +][ +_ - _a_,_]

xz—x+12;p g=31

[+1 ) +’ +1 T Ty Ty T +]’ [+$ +’ +’ T T +, ) +]

x2+x+38;p=q=43

[+’ +, B +7 +, +, R +’ +’ +’ +]1 [_a +7 T T +’ +7 +a +a ) +’ _]

x2+x+13;p=q=47

[+’ Ty Ty +’ +7 +) +7 ) +) +7 ) +7 +]7 [_’ +7 +7 ) +’ ) +’ Ty Ty Ty T _]

x2+x+2;p=qg=59

[+a_’_9___+___’+’_9+’_’_9+]9[_’_,+a+’+9_a+’_,_’+’_’_,_’+9+]
x2+x+12;p=q=67

[+a T T +1 T Ty Ty Ty Ty T +7 +7 +a T +7 T T +]9 [_1 ) +’ +1 T Ty T +7 T T +9 ) +a ERE ] +]
xX2+x+1;p=q="T1

[+, +a ) +, Bl +7 +, T Ty Ty T T +7 ) +s +1 +’ ) +]a

[_, Ty T +’ ) +’ Ty Ty Ty +) +7 Ty T +7 +, +7 +]

xX2+x+3;p=q="T79

[+, T Ty T +’ ) +, +’ +’ +’ +’ ) +’ +’ +1 ) +’ ERE +’ +]9

[_7 T T T +’ +1 T T +7 +7 ) +, ) +7 +, ) +1 T T _]

x2+x+2;p=q=83

[+7 Ty T +’ ) +a Ty T +’ +7 +’ +’ ) +7 Ty Ty T +7 +a Ty T +],
[_7+’_7+7_a_’_a+’_a+a+’_,_7_1_’_7_’_a_,+7+]

x2+x+5;p=q=103

[+___+ +____+’_a+’+,_7+’+,_’_a_,+a_7_,_1+’+]1

[__ R e i e +’_a+’+,+’_’+,_,+a+’_,+,+’_’_]

x2+x+5;p=q=107

[+, +9 +s +1 ) +s ) +, +9 T T +7 +’ T Ty Ty T +7 ) +’ +1 +7 +’ +, +, +’ ) +],

[_, T T +’ +’ Ty Ty Ty T +’ +’ ) +7 ) +7 ) +’ +, ) +’ +, T T +’ ) _]

x2—x+3'p—q=127

[+’ _1 9 Ty Ty Ty Ty Ty +9 +, +7 7+ +’_7_, ) +) +7_,_7 +7_, +,_7 +, Ty Ty T +,_)_, +],

[+1 +’ +,_1 +a +7 1+a +’ +, +7+’_ T T Ty T +a_,+a_7_7 +’_a +’ +, +7_’_’+1 +’ +]
x2-x+14;p=q=131

[+’ T Ty Ty T +’ +1 E +’_5 +7_,_1 +7 +,_1 T T +7 +7_’+ 1+’ +, +a +7 +’_7 +$ +7_,_1 +]1

[+, +, +s +7 +1 +7 +’ T Ty T +, Bl +7 +, ) +7 T Ty T +, +, ) +’ ’+7 +7 +, ERE ] +, ) _]
x2+x+2;p=q=139

[+a +a ) +a T Ty Ty T +7 ) +7 ) +, +9 +, T T T +7 +a +a ER] +7 T T +a +7 +7 +7 +7 +, +’ ) +’ +],

[_’ Ty Ty Ty +, +, +a +’ ) +, +a ) +, +’ ) +’ ) +y +7 +, ) +, Ty Ty Ty +, +’ ) +’ Ty T +9 +’ ) _]
x2+x+12;p=g=151

[+a ) +, +9 +, T T +1 BEREE +, ) +1 +’ ) +’ T T _,+ 9+, +, +’ +1 +’ +, T T +, +9 T Ty Ty Ty T +’ ) +]9
[_7+’+’+’_’_7_’+’_’+1+7_’_5_7_’_$+7_,___ + 7+, 1+7+’_’_7_,_’+’_’_a_’+’_’_]
x2+x+11;p=q=163

[+7 +, +9_’ +’_9 +,_9_’_7 +, +,_9_7_7 ) +7 +,_) +’_7_7_, +7 +, +9 +7 +7 +7 +’ +7 +9_7 +7_’ +9 +’ +9 +7_7_7 +],
[_7 +, T T +7 ERE] +, B +7 ) +7 ) +a +a +, +9 T T Ty T +7 T T +7 +a +a +a ) +a +7 +7 BEREE] +7 T T +7 +7 ) _]
x2+x+38;p=q=211

[+1_,_,_7+1+’_’+_a_’_’_1_1+’ » T 1+’+7+’+, s ’+7+’__’_7_,_$_’+7_,_$+,+,_’_1_’_7+’
+9_,+9+’_9+’_9+’+1_’+1_9+] [ ,+9+s ’ 7_1+,_1 7+a+9 +,_1_’+1_’_9+a_9+9_a_7_1_9_a_7
) +7 +7 +’ Ty T +’ Ty Ty Ty +’ _7+ ’+7 +, +a +’ ’ B} ’+, +]

x2+x+38;p=q=283

[+’+) ’+7____+___7_,_,+7+7_7_,_,_7+,+7+’_7+7+’+7 +_’+7_’+7_’_9+,_9+,_7_,_7
_7+,+a a+,+7 7+a+, ,+,_3 ,_,+,_7_,+1+7+,+a_a+,+7_7_7+7+? ++][ ++ __7+a+’+a+7
_9+’+1+’+9+’_’+’_,_’+’+’+a+,_9_9+’_a+,+9+9+’+’+9_9_’+a+, ’+’+’+a_’_,_9_9_’_’+’+9_,
+, ) +’ +, T Ty T +7 T T Ty T +, ) +1 +7 +, ) +’ _]

x2+x+5;p=q=307

[+7+’+’_7 + +++ + ++ +_9_’+’+ ++ ’+9_7_a_7_7_a_,+,+,_’_7_7_’_’
_7_’_’_a_7+ ’+7 ++++ ++ ___++___a_7+a+’+7+7 ’+7_’+’ 7+]’[a+’ ’ T
+7+,+,+7_7__, ,+7 +++ +_)_’+7 B ,+7+9 ’ 7+9 ’+’ 7+’ 2 Ty T ,+7_,+7_7_,_)+,_7_7
_7+1+a+’_1+a 1+7+7 ++,_a_,_,_a_,_7+7+,_,+,_7+7_1_,+7+1___]
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Appendix E. We list here the weighing matrices W(4n, 4n—2) of 4C-type for odd n < 21.

4n a,b,c,d
4 [0], [+], [0, [+]
12 [0, + +], [+ — -1, [0, — —1, [+, —, —]
20 [0, + + + +], [+ + — —, +], [0, + —, —, +], [+ —, + + —]
28 [0,—,+ ++ + ] [+ + -+ + — +, [0, + — — + -1, [+ + + — — - ]
36 [0, + — + — — +] [—|— ===+, [0,-++-—-++-1[+++H-++—-+ +]
44 [0,+,—,—, +,—,—,+ -+, [+t - - —,—,—,+],
[0, + — + —, + +, — -+, [+ + +, -+ + = =+ ]
52 [0,+ +, ,+,— - = —,+, -++,+H-+H---+H+H—-—-—-+ -]
o,--+++--+++--1+--+---——+— -]
60 [0, —, —, + +, +, ,+,+, -+ + ,—,—],[+,+,—,—,—,—,+, s = == — — T,
[0, + -+t --++H--+t+t-+-+,[+-HH--————— 1t 1 —]
68 [0, —, + + +, ,+, - +H-++t+-1,-+t--+-++--++-+ -+l
[0, +, + + +, +, — + +x---+t+H++H+,HH-H5-+H--—+H+H—-— -+ -+ 1]
76 [0, + + + +, — + -+, +, -+t-++++--+-+---+H-++—-+—-— -+ ++]
[0, + + + —, +, -+ + + +, -—+t-+++,-+H---+H+-+H+H+H+H -+ - - =+
84 o,-,-, +-+--++--+-+--++-L--+-++-+t---HHH-H-+t-++ -
o,+-+---++--H-H--+H+tH--+t-+t,[+H---H+-+H-H+H-—--—H+H—-+H+H+H+ -]
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