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 To investigate more fully, than what was done in the past, the construction of symmetric Hadamard matrices 
of “propus type”, a symmetric variation of the Goethals — Seidel array characterized by necessary symmetry of one of the 
blocks and equality of two other blocks out of the total of four blocks. Analytic theory of equations for parameters 
of difference families used in the propus construction of symmetric Hadamard matrices, based on the theorems of Liouville 
and Dixon. Numerical method, due to the authors, for the search of two or three cyclic blocks to construct Hadamard matri-
ces of two-circulant or propus type. This method speeds up the classical search of required sequences by distributing them 
into different bins using a hash-function.  A wide collection of new symmetric Hadamard matrices was obtained and 
tabulated, according to the feasible sets of parameters. In addition to the novelty of this collection, we have obtained new 
symmetric Hadamard matrices of orders 92, 116 and 156. For the order 156, no symmetric Hadamard matrices were known 
previously. Hadamard matrices are used extensively in the problems of error-free coding, compression 
and masking of video information. Programs for search of symmetric Hadamard matrices and a library of constructed matri-
ces are used in the mathematical network “Internet” together with executable on-line algorithms.

 — Symmetric Hadamard Matrices, Goethals — Seidel Array, Propus Construction, Cyclic Difference Families. 

Introduction

In this paper we investigate some special fea-
tures of symmetric Hadamard matrices. Let us 
recall that a Hadamard matrix is a {1, –1}-matrix 
H of order n whose columns (or rows) are mutually 
orthogonal 

 HTH HHT nI,  (1)

where I is the identity matrix. This definition is 
due to Hadamard [1], who pointed out the extremal 
property of the solutions of this quadratic equation 
(these matrices have the maximal possible absolute 
value of determinant among all complex matrices 
whose entries have modulus at most 1), and also the 
possibility that such matrices exist for all orders 
n 4v, v integer.

As a rule, the search for Hadamard matrices is 
simplified by using special arrays, built from circu-
lant blocks, i. e., matrices generated by cyclic shifts 
of the top row. As an example, we can mention the 
Williamson array [2] which makes use of four cir-
culant matrices A, B, C, D and their negatives as 
blocks inside the globally non-symmetric array. The 
requirement that the blocks be symmetric works in 
some cases but not always. The first failure of sym-
metry occurs for size v 35 [3]. More such examples 
were found later, see the paper [4].

This problem was circumvented by Goethals and 
Seidel [5] who invented a new array, now known as 
Goethals — Seidel array or just GS-array, see (5) 
below. This array does not require any of the four 
circulant blocks to be symmetric. That is its major 
advantage. If at least one of the blocks is of skew 
type, then one can rearrange the blocks to obtain a 
skew-Hadamard matrix. Ever since this array has 
played a very important role in the construction of 
Hadamard matrices and skew-Hadamard matrices.

However, a tool of similar nature for the construc-
tion of symmetric Hadamard matrices was lacking. 
Such a tool was invented recently by J. Seberry and 
N. A. Balonin [6]. They introduced a simple varia-
tion of the GS-array to which we refer as the Propus 
array, see (6) below. In the paper [6] it is shown that 
the symmetry of the array can be easily achieved by 
demanding that the block A be symmetric and that 
among the remaining three blocks two of them are 
equal, say B C (an analog of partial symmetry). 
This tool has been already used to construct sym-
metric Hadamard matrices of new orders [6, 7].

Since the size of a Hadamard matrix or a skew or 
symmetric Hadamard matrix can always be doubled, 
while preserving the type of the matrix, it suffices 
to construct these matrices for orders 4v with v odd. 
We show (see Theorem 1) that for every odd integer 
v there exists at least one propus parameter set. 
Taking this into account, the Propus array can be 
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used, conjecturally, to obtain symmetric Hadamard 
matrices of order 4v for all odd v. However there 
exists a propus parameter set for which there is no 
cyclic propus family. So far we have only one such ex-
ample namely (25; 10, 10, 10, 10; 15).

Our purpose is to develop effective numerical 
algorithms for the search of symmetric Hadamard 
matrices and subsequent analysis of them and to ob-
tain new orders of such matrices. All matrix solu-
tions are classified by using the table of all feasible 
parameter sets in the range of odd v < 50. We point 
out some peculiarities arising from this table. For 
instance, apart from the Turyn infinite series in 
which all four circulant blocks are symmetric, there 
is only one case known so far (namely v 13), where 
there exist a propus family with both blocks A and 
D symmetric, and satisfying B C as well.

This paper continues the investigation of the 
theme of symmetry, considered in the papers [8, 9], 
and in particular we present for the first time sym-
metric Hadamard matrices of order 156. In this way, 
the orders 92, 116, 156, 172 listed as exceptions in 
[10, Table 1.52, p. 277] are all covered by the propus 
construction. The next unsolved case is the order 188 
which is the object of our further research.

Preliminaries

Let G be a finite abelian group of order v written 
additively. A sequence (X1, X2, …, Xm) of subsets of 
G is a difference family if there exists a nonnegative 
integer  such that for any nonzero element a G 
there are exactly  triples (x, y, i) Xi Xi {1, 2, 
…, m} such that x – y a. In that case we say that 
this difference family has parameters (v; k1, k2, …, 
km; ), where ki |Xi| is the cardinality of Xi and 
that the Xi are its base blocks. A simple counting 
argument shows that the parameter set of a differ-
ence family must satisfy the equality

 

.   (2)

If G is a cyclic group, we say that the difference 
families of G are cyclic.

Although the concepts defined below can be de-
fined over arbitrary finite abelian groups, we shall 
assume in this paper that G is a cyclic group of or-
der v and we identify it with the additive group of 
the ring of integers Zv Z/vZ {0, 1, …, v – 1} mod-
ulo v. We are interested in the difference families 
consisting of four base blocks having the parameter 
set (v; k1, k2, k3, k4; ) such that 

 

.   (3)

For convenience, we shall refer to these param-
eter sets as GS-parameter sets and to the difference 

families having these parameters as GS-difference 
families. It is a folklore conjecture that for each GS-
parameter set there exists a cyclic difference fami-
ly with these parameters.

There is a close relationship between GS-
difference families and the quadruples of { 1}-se-
quences (also known as binary sequences) of length 
v whose periodic autocorellation functions add up 
to 0 (except at the origin). Let us recall some rele-
vant definitions.

Let A (a0, a1, ..., av–1) be an integer sequence of 
length v. We view the indices 0, 1, …, v – 1 as ele-
ments of Zv. The periodic autocorrelation function 
of A is the function PAFA: Zv Z defined by 

 

PAF .   (4)

(The indices should be reduced modulo v.) To A 
we associate the cyclic matrix C whose first row 
is A itself. We say that A is symmetric resp. skew 
if ai av–i resp. ai –av–i for i 1, 2, …, v – 1. 
Equivalently, A is symmetric if and only if C is a 
symmetric matrix, and A is skew if and only if 
C + CT 2a0Iv, where T denotes the transpose and 
Iv the identity matrix of order v.

To any subset X Zv we associate the binary 
sequence A (a0, a1, ..., av–1), where ai –1 if and 
only if i X. Let (X1, X2, X3, X4) be a quadruple of 
subsets of Zv with |Xi| ki and let (A1, A2, A3, A4) 
be their associated binary sequences, respectively. 
Then it is well known that the Xi form a difference 
family whose parameter set satisfies the equation 
(3) if and only if the periodic autocorrelation func-
tions of the Ai add up to 0 (except at the origin).

Let (A1, A2, A3, A4) be a quadruple of binary se-
quences of length v whose PAF-functions add up  
to 0, and let (C1, C2, C3, C4) be their associated cyclic 
matrices. Then by plugging these matrices into the 
Goethals — Seidel array: 

 

,   (5)

we obtain a Hadamard matrix of order 4v. The 
matrix R in (5) is the back-circulant identity matrix 
of order v: 

.
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This is a very powerful method of construction 
of Hadamard matrices. If A1 is skew then H will 
be a Hadamard matrix of skew type (skew-Had-
amard matrix), i. e., a Hadamard matrix such that 
H + HT 2I4v. 

It was recently observed in [6] that (after a small 
twist) one can make use of the GS-array to construct 
also the symmetric Hadamard matrices. Namely, if 
we multiply the first column of (5) by –1 and switch 
the second and third rows then we obtain the new 
array, to which we refer as the propus array:

 

.   (6)

This is still a Hadamard matrix. In the special 
case when A1 is symmetric and A2 A3 this matrix 
is a symmetric Hadamard matrix. We say that a 
GS-parameter set (v; k1, k2, k3, k4; ) is a propus pa-
rameter set if k2 k3, and we say that a difference 
family (X1, X2, X3, X4) having such parameter set 
is a propus family if X2 X3 and the set X1 or X4 is 
symmetric.

To summarize, in order to construct a symmet-
ric Hadamard matrix of order 4v it suffices to con-
struct a propus difference family (X1, X2, X3, X4) in 
Zv. All symmetric Hadamard matrices constructed 
in this paper use this method. We conjecture that 
for v odd this method is universal, i. e., for each odd 
v > 1 there exists a propus difference family in Zv. 
Theorem 1 below made this conjecture possible.

Existence of Parameter Sets

In this section we prove the following theorem.
Theorem 1. For any odd positive integer v > 1 

there exists a propus parameter set (v; x, y, y, z; ) 
with x, y, z < v/2.

Let us first recall an old result of Liouville. If x 
is an indeterminate, the polynomial Tx x(x + 1)/2 
takes nonnegative integer values at integer points. 
These values are known as triangular numbers. 
The ternary triangular form is a polynomial 
aTx + bTy + cTz, where the coefficients (a, b, c) are 
positive integers and x, y, z are commuting indeter-
minates. Such form is said to be universal if it rep-
resents all positive integers, i. e., each positive in-
teger is the value of this form at some point (x0, y0, 
z0) Z3. Since T–x Tx–1, we can assume that x0, 
y0, z0 are nonnegative. Liouville has proved in 1863 
[11] that there are exactly seven universal ternary 
triangular forms, assuming that a  b  c. These 
forms have the coefficients 

(1, 1, 1), (1, 1, 2), (1, 1, 4), (1, 1, 5), (1, 2, 2), (1, 2, 
3), (1, 2, 4).

This theorem of Liouville generalizes a result 
of Gauss who proved earlier the universality in the 
case a b c 1. We shall use below the fact that 
the triangular form with coefficients a b 1, c 2 
is universal. 

Proof: The block sizes x, y, z of our parameter set 
satisfy the equation 

 x(x – 1) + 2y(y – 1) + z(z – 1) (v – 1).  (7)

As x + 2y + z – v this equation can be writ- 
ten as 

 (v – 2x)2 + 2(v – 2y)2 + (v – 2z)2 4v.  (8)

Since v is odd, we have v – 2x 2p + 1, v – 2y
2q + 1, v – 2z 2r + 1, where p, q, r are integers. 

Then the above equation becomes 

 Tp + 2Tq + Tr (v – 1)/2.  (9) 

By Liouville’s result mentioned above, there ex-
ist integers p, q, r satisfying this equation. Hence, 
there exist integers x, y, z satisfying the equation 
(8). If x < 0 then v – 2x > v and the equation (8) 
implies that 4 > v–2x. This contradicts our hypoth-
esis that v  3. We conclude that x  0. Similarly, 
we can show that y, z  0. The equation (7) implies 
now that x + 2y + z – v > 0. Hence the theorem is 
proved.

In Appendix we list the propus parameter sets 
(v; x, y, y, z; ) for odd v, 1 < v < 50. They are com-
puted by solving the equation (9) for each of these 
values v. Since we can replace any base block by its 
complement and permute the blocks, we shall as-
sume that x, y, z  (v – 1)/2 and x  z.

For the sake of completeness, let us consider the 
case when v is even. The result here is quite differ-
ent, there is an arithmetic condition which rules 
out the existence of propus parameter sets for some 
even values of v.

Theorem 2. For even positive integer v there ex-
ists a propus parameter set (v; x, y, y, z; ) with x, 
y, z  v/2 if and only if v does not have the form 
22k+1(8m + 7), where k and m are nonnegative inte-
gers.

Proof: The equation (8) is valid also in this case, i. e., 
when v is even. Then we have v – 2x 2p, v – 2y 2q, 
v – 2z 2r, where p, q, r are integers. Hence, the equa-
tion (8) can be written as p2 + 2q2 + r2 v. By a the-
orem of Dixon [12, Theorem V], this equation has 
no integral solution if and only if v has the form 
22k+1(8m + 7). One can now easily complete the 
proof.

For instance, this theorem rules out the integers 
v 14, 30, 46, 56, 62, 78, 94, i. e., there are no pro-
pus parameter sets with these values of the param-
eter v.
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Symmetric Hadamard Matrices  
of Order 4 39

The smallest order 4v for which no symmetric 
Hadamard matrix was known prior to this work is 
156 4 39. There are two propus parameter sets 
(39; 17, 17, 17, 15; 27) and (39; 18, 16, 16, 16; 27) that 
can be used to construct such matrices, as in Fig. 1. 

We have constructed many such matrices, but 
here we record only five pairwise non-equivalent 
propus families for each parameter set.

For the first parameter set, the block A is sym-
metric in the first four families while D is symmet-
ric in the last family:

(39; 17, 17, 17, 15; 27)
[0, 2, 4, 7, 8, 12, 13, 18, 19, 20, 21, 26, 27, 31, 32, 

35, 37],
[0, 1, 2, 3, 10, 14, 17, 18, 19, 21, 24, 26, 27, 30, 

32, 36, 37],
[0, 1, 2, 3, 10, 14, 17, 18, 19, 21, 24, 26, 27, 30, 

32, 36, 37],
[0, 1, 2, 3, 4, 5, 9, 11, 12, 15, 26, 29, 31, 33, 36];

[0, 2, 6, 8, 9, 12, 13, 18, 19, 20, 21, 26, 27, 30, 31, 
33, 37],

[0, 1, 2, 3, 5, 6, 8, 10, 14, 15, 17, 18, 19, 24, 28, 
34, 37],

[0, 1, 2, 3, 5, 6, 8, 10, 14, 15, 17, 18, 19, 24, 28, 
34, 37],

[0, 1, 2, 3, 5, 10, 13, 16, 17, 18, 22, 24, 25, 28, 33];

[0, 3, 7, 8, 9, 12, 13, 17, 19, 20, 22, 26, 27, 30, 31, 
32, 36],

[0, 1, 2, 5, 7, 8, 12, 16, 20, 22, 23, 25, 32, 33, 34, 
36, 38],

[0, 1, 2, 5, 7, 8, 12, 16, 20, 22, 23, 25, 32, 33, 34, 
36, 38],

[0, 1, 2, 3, 6, 9, 18, 20, 22, 23, 30, 32, 33, 34, 36];

[0, 3, 7, 9, 13, 14, 17, 18, 19, 20, 21, 22, 25, 26, 
30, 32, 36],

[0, 1, 2, 3, 4, 7, 8, 9, 10, 15, 18, 20, 24, 28, 29, 
31, 33],

[0, 1, 2, 3, 4, 7, 8, 9, 10, 15, 18, 20, 24, 28, 29, 
31, 33],

[0, 1, 3, 4, 8, 13, 14, 16, 17, 20, 23, 25, 28, 35, 37];

[0, 1, 2, 3, 5, 10, 12, 14, 16, 17, 23, 24, 28, 30, 31, 
36, 37],

[0, 1, 2, 4, 9, 10, 12, 13, 17, 18, 22, 24, 27, 30, 32, 
33, 37],

[0, 1, 2, 4, 9, 10, 12, 13, 17, 18, 22, 24, 27, 30, 32, 
33, 37],

[0, 1, 2, 3, 4, 8, 14, 18, 21, 25, 31, 35, 36, 37, 38].

For the second parameter set, the block A is sym-
metric in the first family while D is symmetric in 
the other four families:

(39; 18, 16, 16, 16; 27)
[3, 4, 5, 7, 8, 10, 12, 17, 18, 21, 22, 27, 29, 31, 32, 

34, 35, 36],
[0, 1, 2, 3, 8, 9, 17, 19, 21, 23, 26, 29, 32, 35, 36, 37],
[0, 1, 2, 3, 8, 9, 17, 19, 21, 23, 26, 29, 32, 35, 36, 

37],
[0, 1, 2, 4, 5, 6, 10, 11, 13, 14, 21, 22, 27, 29, 33, 

36];

[0, 1, 2, 6, 7, 9, 10, 12, 15, 17, 20, 21, 24, 28, 29, 
31, 33, 37],

[0, 1, 2, 3, 7, 13, 18, 20, 21, 24, 27, 28, 32, 34, 
36, 37],

[0, 1, 2, 3, 7, 13, 18, 20, 21, 24, 27, 28, 32, 34, 
36, 37],

[2, 7, 8, 9, 15, 17, 18, 19, 20, 21, 22, 24, 30, 31, 
32, 37];

[0, 1, 2, 6, 8, 9, 10, 12, 14, 16, 18, 19, 27, 30, 32, 
33, 36, 37],

[0, 1, 2, 3, 7, 8, 11, 19, 21, 24, 26, 27, 28, 31, 33, 
36],

[0, 1, 2, 3, 7, 8, 11, 19, 21, 24, 26, 27, 28, 31, 33, 
36],

[2, 4, 5, 6, 7, 11, 17, 18, 21, 22, 28, 32, 33, 34, 
35, 37];

[0, 1, 2, 8, 9, 15, 16, 18, 19, 21, 23, 26, 28, 30, 31, 
32, 34, 35],

[0, 1, 2, 5, 6, 14, 17, 20, 22, 24, 25, 27, 28, 29, 
31, 35],

[0, 1, 2, 5, 6, 14, 17, 20, 22, 24, 25, 27, 28, 29, 
31, 35],

[1, 7, 10, 11, 12, 13, 17, 19, 20, 22, 26, 27, 28, 29, 
32, 38];

[0, 1, 2, 3, 4, 6, 8, 9, 10, 12, 18, 23, 24, 28, 30, 
31, 32, 35],

[0, 1, 2, 5, 6, 8, 11, 13, 15, 17, 24, 27, 29, 30, 36, 
37],

[0, 1, 2, 5, 6, 8, 11, 13, 15, 17, 24, 27, 29, 30, 36, 
37],

 Fig. 1. Propus 156 with (39; 17, 17, 17, 15; 27) and 
(39; 18, 16, 16, 16; 27)



ИНФОРМАЦИОННО
УПРАВЛЯЮЩИЕ СИСТЕМЫ № 5, 20176

ТЕОРЕТИЧЕСКАЯ И ПРИКЛАДНАЯ МАТЕМАТИКА

[4, 5, 8, 9, 10, 13, 15, 16, 23, 24, 26, 29, 30, 31, 
34, 35].

Description of the Algorithm

Let us first describe the algorithm for the search 
of periodic Golay pairs, a somewhat simpler prob-
lem. The search we have in mind is a non-exhaus-
tive search which uses a random number generator 
to create the sequences. 

The periodic Golay pairs of length v are pairs of 
{ 1}-sequences a (a0, a1, ..., av–1) and b (b0, b1, 
..., bv–1) whose PAF functions have sum 0 except at 
the origin. (We shall ignore the value of the PAF 
functions at the origin.) These pairs exist only for 
even values of v (excluding the trivial case v 1). 
The number of indices i such that ai –1 is fixed, 
and we denote it by k1. Similarly, k2 is the number 
of –1 terms in b. Since the PAF values of a sequence 
are symmetric, i. e., PAFa(s) PAFa(v – s) for s 1, 
2, …, v – 1, it suffices to compute and record these 
values for 1  s  v/2.

The very simple and time consuming algorithm 
can be described as follows. First it generates just 
one random a-sequence having exactly k1 terms –1 
and computes its PAF function. Next, it computes a 
bunch of (say w) random b-sequences having exact-
ly k2 terms –1. At the same time it computes their 
PAF values and checks whether the sum of the PAF 
functions of the a-sequence and the b-sequence is 0. 
(The required memory for this is negligible.) This 
complets one basic step. This step is then repeated 
as long as desired.

A more effective algorithm generates a collec-
tion of, say, w binary sequences a having exactly k1 
terms –1 and records them together with the PAF 
values in a table. Another table also of size w is 
used to generate and record a collection of binary 
sequences b having exactly k2 terms –1 and their 
negated PAF values. The two tables of size w make 
it possible to make quickly w2 comparisons. 

The second method performs faster because it 
computes only 2w sequences (and their PAF values) in 
order to check w2 pairs for matching, while w steps of 
the simple method has to compute w(w + 1) sequenc-
es to check w2 pairs for matching. So, the saving is in 
the number of sequences that one has to generate and 
compute the PAF values: w(w + 1) for the brute force 
method and 2w for the second method. 

However, making two big tables is not feasible as 
the active memory is limited. To handle this prob-
lem, one of the authors proposed and implemented 
the following solution. The tables of data are re-
placed by trees having a fixed number of branch-
es. Each branch can hold at most w records of data 
to which we refer as leaves of that branch (Fig. 2).  
A random number generator is used to generate da-
ta and a hash-function, f, is used to distribute the 

data and store them into the branches. After gen-
erating a sequence say a and computing its PAF 
values, the hash function is evaluated at the PAF 
values which gives the numerical label f(PAFa) of 
the branch where the data will be stored. In the case 
of the b-sequence, the PAF values are negated just 
before storing them into the chosen branch.

If f takes different values at the functions PAFa 
and –PAFb then PAFa  –PAFb, but the converse 
fails. Consequently, no comparisons need to be 
made between the a-leaves and b-leaves belonging 
to branches having different labels. For that rea-
son, this third method is much more effective than 
the second one.

A big tree crown of size M 2m gives the function 

PAF

whose coefficients are the signatures sign(PAF(i)) 
{0, 1} of the first m PAF values. (We take, 

that 1 corresponds to positive values of the PAF 
function.) This definition can be modified by using 
the ternary function sign(PAF(i)) {0, 1, –1} which 
distinguishes 0 and the signs of the nonzero PAF 
values, and adding 2m if necessary to make the 
label positive.

Abstract “ideal” hash-function gives strictly 
uniform distribution of leaves over the branches.

When using binary representation of integers in 
computer’s memory it is beneficial to use logic oper-
ations of the iteration formula 

F ((F shl 1) or (F shr 31) and 1), i 1, …, v/2.

The symbols “shl” and “shr” denote left and right 
shift of the binary code for the indicated amount, 
the computations begin with the value F 0 and 
terminate with the restriction f F mod M, which 
gurantees that the size of the crown will be M 2m.

 Fig. 2. Block-scheme of the algorithm

Generator
Tree a Tree b

Branches a Branches b

Leaf

Cross-matching and Memory Cleaning
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Parameter Sets for Symmetric Hadamard 
Matrices

We list here the propus parameter sets (v; x, y, 
y, z; ) with v odd in the range v < 50 such that x, 
y, z < v/2 and x  z. The cyclic propus families con-
sisting of four base blocks A, B, C, D Zv having 
sizes x, y, y, z, respectively, and such that B C 
and either A or D is symmetric give symmetric 
Hadamard matrices of order 4v. If x z  y then we 
also include in our list the parameter set (v; y, x, 
x, y; ) indicating that the two blocks of size x are 
required to be equal. In that case we treat these two 
parameter sets as different propus parameter sets.

The four base blocks are denoted by A, B, C, D. In 
all propus families mentioned below we require that 
B C. If we know that there is such a family with 
symmetric block A, we indicate this by the symbol 
A, and similarly for the block D. If we know that 
there exists a family with both A and D symmetric, 
then we write the symbol AD. If there are no fami-
lies with A or D symmetric, we write “No” after the 
parameter set. Finally, the question mark means 
that the existence of families with A or D symmet-
ric remains undecided.

The symbol T indicates that the parameter set 
belongs to the Turyn series of Williamson matri-
ces. We note that T implies AD. Further, the sym-
bol X indicates that the parameter set belongs to 
another infinite series (see [7, Theorem 5]) which is 
based on the paper [13] of Xia, Xia, Seberry, and 
Wu. In our list below X implies D. More precisely, 
for a difference family A, B, C, D in the X-series 
two blocks are equal, say B C, and one of the re-
maining blocks is skew, block A in our list, and the 
last one is symmetric, block D. We remark that a 
difference family in the X-series gives a skew and 
a symmetric Hadamard matrix of order 4v (Table).

For odd v less than 42 there are only two propus 
parameter sets, (5; 1, 2, 2, 1; 1) and (25; 10, 10, 10, 
10; 15), having no cyclic propus difference families. 
While for the former set this claim can be easily 
proved, for the latter set it was checked by perform-
ing an exhaustive computer search. There is a pos-
sibility that a propus family with parameters (25; 
10, 10, 10, 10; 15) may exist in Z5 Z5.

 Table of propus paramater sets with odd v < 50

(3; 1, 1, 1, 0; 0) AD, T, X (5; 1, 2, 2, 1; 1) No 

(5; 2, 1, 1, 2; 1) AD, T, X (7; 3, 2, 2, 2; 2) AD, T 

(7; 3, 3, 3, 1; 3) D, X (9; 3, 3, 3, 3; 3) A, D 

(9; 3, 4, 4, 2; 4) AD, T (11; 5, 4, 4, 3; 5) A, D, X 

(13; 4, 6, 6, 4; 7) A, D (13; 5, 5, 5, 4; 6) AD, T 

(13; 6, 4, 4, 6; 7) AD (13; 6, 6, 6, 3; 8) A, D 

(15; 6, 7, 7, 4; 9) A, D (15; 7, 5, 5, 6; 8) AD, T, X 

(17; 6, 7, 7, 6; 9) A, D (17; 7, 6, 6, 7; 9) A, D 

(17; 8, 7, 7, 5; 10) A, D, X (19; 7, 9, 9, 6; 12) AD, T 

(19; 8, 8, 8, 6; 11) A, D (19; 9, 7, 7, 7; 11) A, D

(21; 9, 8, 8, 8; 12) AD, T
(21; 10, 10, 10, 

6; 15)
A, D, X 

(23; 9, 10, 10, 8; 

14)
A, D

(23; 10, 11, 11, 7; 

16)
A, D 

(25; 9, 12, 12, 9; 

17)
A, D

(25; 10, 10, 10, 

10; 15)
No 

(25; 12, 9, 9, 12; 

17)
AD, T

(25; 12, 10, 10, 

9; 16)
A, D

(25; 12, 11, 11, 8; 

17)
A, D

(27; 11, 13, 13, 

9; 19)
A, D 

(27; 12, 11, 11, 

10; 17)
A, D

(27; 12, 12, 12, 

9; 18)
A, D 

(27; 13, 10, 10, 

12; 18)
AD, T, X

(29; 11, 13, 13, 

11; 19)
A, D 

(29; 13, 11, 11, 

13; 19)
A, D

(31; 13, 13, 13, 

12; 20)
AD, T 

(31; 13, 14, 14, 

11; 21)
A, D

(31; 15, 12, 12, 

13; 21)
A, D 

(31; 15, 15, 15, 

10; 24)
A, D

(33; 13, 16, 16, 

12; 24)
A, D 

(33; 15, 13, 13, 

14; 22)
A, D

(33; 15, 16, 16, 

11; 25)
A, D 

(33; 16, 14, 14, 

12; 23)
A, D, X

(35; 16, 15, 15, 

13; 24)
A, D 

(35; 17, 16, 16, 

12; 26)
A, D, X

(37; 15, 16, 16, 

15; 25)
A, D 

(37; 15, 17, 17, 

14; 26)
AD, T

(37; 16, 15, 15, 

16; 25)
A, D 

(37; 16, 18, 18, 

13; 28)
A, D

(37; 17, 17, 17, 

13; 27)
A, D 

(37; 18, 15, 15, 

15; 26)
A, D

(39; 17, 17, 17, 

15; 27)
A, D 

(39; 18, 16, 16, 

16; 27)
A, D

(41; 16, 20, 20, 

16; 31)
A, D 

(41; 18, 19, 19, 

15; 30)
A, D

(41; 20, 16, 16, 

20; 31)

AD, T, 

X 

(43; 18, 21, 21, 

16; 33)
?

(43; 19, 18, 18, 

18; 30)
? 

(43; 21, 17, 17, 

20; 32)
?

(43; 21, 19, 19, 

16; 32)
? 

(43; 21, 21, 21, 

15; 35)
D

(45; 18, 21, 21, 

18; 33)
? 

(45; 19, 20, 20, 

18; 32)
AD, T

(45; 21, 18, 18, 

21; 33)
?

(45; 21, 20, 20, 

17; 33)
?

(45; 21, 22, 22, 

16; 36)
?

(45; 22, 19, 19, 

18; 33)
D, X

(47; 20, 22, 22, 

18; 35)
? 

(47; 22, 20, 20, 

19; 34)
?

(47; 23, 19, 19, 

21; 35)
? 

(47; 23, 22, 22, 

17; 37)
?

(49; 21, 21, 21, 

21; 35)
?

(49; 22, 22, 22, 

19; 36)
?

(49; 22, 24, 24, 

18; 39)
? 

(49; 23, 20, 20, 

22; 36)
AD, T

(49; 23, 23, 23, 

18; 38)
? 
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Appendix 

In order to justify our claims made in section 6 
regarding the propus parameter sets, we give the 
examples of the propus families having the re-
quired properties. In all cases the blocks B and C 
are equal, and to save space we omit the block C. The 
families are terminated by semicolons.

(9; 3, 3, 3, 3; 3)
[0, 1, 8], [0, 2, 5], [0, 1, 4];

(11; 5, 4, 4, 3; 5)
[0, 2, 5, 6, 9], [0, 1, 2, 8], [0, 2, 8];

(13; 4, 6, 6, 4; 7)
[3, 5, 8, 10], [0, 1, 2, 3, 6, 10], [0, 1, 5, 7];

(13; 6, 4, 4, 6; 7)
[2, 5, 6, 7, 8, 11], [0, 1, 4, 6], [1, 3, 4, 9, 10, 12];

(13; 6, 6, 6, 3; 8)
[1, 4, 5, 8, 9, 12], [0, 1, 2, 4, 6, 7], [0, 2, 5];
[0, 1, 3, 4, 6, 9], [0, 1, 2, 8, 9, 11], [0, 4, 9];

(15; 6, 7, 7, 4; 9)
[1, 6, 7, 8, 9, 14], [0, 1, 2, 4, 5, 7, 11], [0, 3, 6, 10];
[0, 2, 4, 5, 10, 12], [0, 1, 2, 4, 9, 10, 13], [5, 6, 9, 10];

(17; 6, 7, 7, 6; 9)
[2, 5, 6, 11, 12, 15], [0, 1, 2, 3, 5, 8, 13], [0, 1, 7, 

9, 11, 15];
[0, 6, 7, 8, 9, 10, 11], [0, 1, 5, 7, 10, 13], [0, 1, 2, 

6, 8, 11, 15];

(17; 8, 7, 7, 5; 10)
[2, 3, 5, 6, 11, 12, 14, 15], [0, 1, 3, 4, 11, 13, 15], 

[0, 1, 5, 6, 12];

(19; 8, 8, 8, 6; 11)
[1, 2, 3, 9, 10, 16, 17, 18],
[0, 1, 3, 9, 12, 13, 15, 17],
[0, 1, 6, 7, 10, 15];
[0, 1, 2, 4, 6, 9, 12, 13],
[0, 1, 2, 5, 6, 12, 15, 17],
[4, 6, 7, 12, 13, 15];

(19; 9, 7, 7, 7; 11)
[0, 1, 2, 3, 7, 12, 16, 17, 18],
[0, 1, 3, 7, 11, 12, 14],
[0, 1, 3, 6, 9, 13, 15];
[0, 1, 2, 7, 12, 15, 16, 17, 18],
[0, 1, 4, 6, 11, 13, 14],
[0, 2, 6, 9, 10, 13, 17];

(21; 10, 10, 10, 6; 15)
[1, 2, 3, 5, 10, 11, 16, 18, 19, 20],
[0, 1, 3, 4, 6, 8, 11, 12, 13, 18],
[0, 1, 2, 6, 12, 19];

(23; 9, 10, 10, 8; 14)
[0, 2, 3, 6, 10, 13, 17, 20, 21],
[0, 2, 4, 5, 6, 7, 12, 13, 18, 21],
[2, 3, 6, 11, 12, 14, 15, 16];
[0, 1, 4, 9, 14, 17, 19, 21, 22],
[0, 5, 9, 11, 12, 13, 14, 16, 20, 22],
[2, 5, 6, 11, 12, 17, 18, 21];

(23; 10, 11, 11, 7; 16)
[1, 3, 4, 9, 10, 13, 14, 19, 20, 22],
[1, 3, 4, 6, 7, 8, 9, 15, 18, 19, 22],
[1, 3, 4, 5, 10, 18, 20];
[1, 2, 5, 11, 12, 15, 16, 18, 19, 20],
[1, 3, 4, 5, 6, 7, 13, 16, 18, 20, 21],
[0, 5, 7, 11, 12, 16, 18];

(25; 9, 12, 12, 9; 17)
[0, 1, 5, 8, 10, 15, 17, 20, 24],
[0, 1, 3, 9, 12, 13, 14, 16, 17, 19, 20, 24],
[1, 7, 13, 14, 15, 17, 18, 20, 24];

(25; 12, 10, 10, 9; 16)
[1, 2, 3, 4, 10, 12, 13, 15, 21, 22, 23, 24],
[0, 5, 10, 14, 15, 17, 18, 21, 23, 24],
[2, 4, 8, 12, 14, 16, 19, 20, 24];
[0, 1, 7, 12, 14, 15, 17, 18, 20, 21, 22, 23],
[2, 3, 4, 6, 11, 12, 13, 16, 18, 24],
[0, 2, 6, 9, 10, 15, 16, 19, 23];

(25; 12, 11, 11, 8; 17)
[3, 4, 5, 6, 9, 11, 14, 16, 19, 20, 21, 22],
[0, 1, 9, 10, 13, 14, 17, 19, 20, 21, 23],
[2, 9, 13, 15, 17, 20, 22, 23];
[0, 4, 5, 8, 11, 12, 13, 14, 15, 16, 17, 22],
[3, 4, 7, 8, 10, 13, 15, 19, 21, 22, 23],
[2, 3, 5, 7, 18, 20, 22, 23];

(27; 11, 13, 13, 9; 19)
[0, 1, 2, 4, 8, 12, 15, 19, 23, 25, 26],
[3, 4, 5, 6, 8, 9, 11, 15, 16, 18, 20, 24, 25],
[0, 8, 9, 10, 13, 16, 18, 19, 22];
[2, 3, 4, 8, 9, 12, 13, 15, 17, 19, 22],
[2, 3, 6, 9, 11, 17, 18, 19, 20, 21, 23, 25, 26],
[0, 1, 3, 8, 13, 14, 19, 24, 26];
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(27; 12, 11, 11, 10; 17)
[1, 4, 5, 6, 8, 9, 18, 19, 21, 22, 23, 26],
[5, 6, 9, 11, 14, 16, 17, 18, 20, 25, 26],
[1, 2, 4, 5, 6, 10, 12, 18, 22, 26];
[0, 1, 2, 5, 6, 8, 11, 15, 16, 17, 20, 22],
[1, 2, 7, 9, 15, 17, 18, 19, 21, 22, 26],
[1, 2, 3, 6, 12, 15, 21, 24, 25, 26];

(27; 12, 12, 12, 9; 18)
[1, 7, 9, 10, 11, 13, 14, 16, 17, 18, 20, 26],
[0, 2, 3, 4, 7, 8, 9, 14, 18, 19, 21, 22],
[0, 2, 4, 6, 9, 12, 15, 20, 26];
[2, 3, 6, 7, 8, 9, 12, 14, 15, 20, 24, 26],
[1, 3, 4, 8, 11, 12, 19, 20, 22, 24, 25, 26],
[0, 2, 5, 12, 13, 14, 15, 22, 25];

(29; 11, 13, 13, 11; 19)
[0, 2, 5, 7, 13, 14, 15, 16, 22, 24, 27],
[3, 6, 7, 8, 9, 10, 13, 14, 17, 18, 20, 22, 26],
[0, 1, 3, 4, 9, 12, 15, 17, 22, 23, 28];

(29; 13, 11, 11, 13; 19)
[0, 2, 8, 9, 12, 13, 14, 15, 16, 17, 20, 21, 27],
[1, 2, 3, 10, 12, 16, 19, 20, 22, 25, 27],
[0, 1, 2, 4, 5, 7, 8, 9, 13, 17, 18, 20, 23];

(31; 13, 14, 14, 11; 21)
[0, 1, 2, 5, 8, 11, 12, 19, 20, 23, 26, 29, 30],
[0, 3, 8, 14, 15, 16, 17, 19, 21, 22, 25, 27, 29, 30],
[0, 1, 4, 6, 11, 15, 16, 20, 22, 24, 30];
[2, 3, 5, 7, 9, 10, 12, 15, 16, 17, 28, 29, 30],
[0, 1, 3, 4, 8, 12, 15, 16, 18, 24, 25, 26, 27, 29],
[0, 1, 6, 10, 12, 15, 16, 19, 21, 25, 30];

(31; 15, 12, 12, 13; 21)
[0, 2, 4, 7, 10, 11, 12, 15, 16, 19, 20, 21, 24, 27, 29],
[2, 3, 5, 12, 14, 15, 19, 20, 25, 26, 27, 30],
[6, 8, 9, 11, 12, 13, 14, 15, 16, 18, 24, 26, 28];
[0, 1, 6, 9, 13, 14, 15, 16, 17, 18, 22, 25, 30],
[2, 4, 6, 9, 10, 13, 15, 20, 23, 25, 26, 29],
[0, 1, 2, 4, 5, 6, 9, 10, 11, 12, 22, 23, 24, 28, 30];

(31; 15, 15, 15, 10; 24)
[0, 1, 2, 7, 10, 11, 14, 15, 16, 17, 20, 21, 24, 29, 30],
[0, 3, 5, 7, 10, 12, 13, 14, 15, 16, 18, 19, 23, 24, 30],
[0, 2, 4, 6, 12, 14, 22, 25, 26, 28];
[0, 4, 6, 8, 10, 11, 15, 16, 18, 20, 21, 23, 24, 26, 28],
[2, 4, 5, 6, 8, 11, 12, 13, 16, 20, 24, 25, 26, 27, 30],
[2, 11, 12, 13, 14, 17, 18, 19, 20, 29];

(33; 13, 16, 16, 12; 24)
[0, 1, 2, 4, 7, 12, 14, 19, 21, 26, 29, 31, 32],
[1, 2, 3, 6, 9, 10, 12, 13, 14, 17, 18, 19, 23, 24, 26, 32],
[1, 4, 5, 11, 13, 14, 15, 17, 19, 20, 28, 32];
[0, 1, 4, 8, 10, 14, 16, 18, 19, 25, 27, 30, 32],
[0, 5, 7, 9, 10, 13, 14, 15, 16, 17, 18, 21, 22, 27, 

28, 30],
[2, 3, 4, 6, 13, 16, 17, 20, 27, 29, 30, 31];

(33; 15, 13, 13, 14; 22)
[0, 2, 3, 5, 9, 10, 13, 14, 19, 20, 23, 24, 28, 30, 31],
[0, 1, 2, 3, 4, 8, 14, 17, 20, 24, 26, 28, 29],
[0, 2, 3, 4, 5, 6, 7, 14, 19, 20, 22, 25, 27, 29];
[0, 1, 2, 4, 7, 11, 13, 16, 18, 26, 27, 28, 29, 30, 32],
[0, 1, 2, 7, 9, 10, 11, 15, 16, 19, 22, 29, 32],
[1, 4, 5, 9, 11, 13, 16, 17, 20, 22, 24, 28, 29, 32];

(33; 15, 16, 16, 11; 25)
[0, 1, 4, 7, 8, 9, 10, 13, 20, 23, 24, 25, 26, 29, 32],
[0, 1, 4, 6, 8, 10, 11, 12, 15, 17, 18, 19, 22, 23, 24, 31],
[1, 6, 7, 8, 10, 11, 14, 16, 26, 29, 31];
[0, 1, 5, 8, 12, 14, 15, 17, 18, 20, 22, 25, 26, 29, 

32],
[0, 1, 3, 8, 13, 14, 15, 19, 21, 22, 23, 25, 27, 30, 

31, 32],
[0, 3, 10, 13, 14, 15, 18, 19, 20, 23, 30];

(33; 16, 14, 14, 12; 23)
[1, 2, 4, 6, 10, 14, 15, 16, 17, 18, 19, 23, 27, 29, 

31, 32],
[0, 2, 9, 10, 11, 13, 15, 16, 19, 20, 21, 22, 25, 28],
[1, 4, 8, 9, 11, 15, 16, 18, 25, 26, 30, 31];

(35; 16, 15, 15, 13; 24)
[1, 3, 4, 7, 9, 10, 11, 15, 20, 24, 25, 26, 28, 31, 

32, 34],
[0, 2, 6, 7, 9, 11, 14, 17, 18, 19, 28, 29, 32, 33, 34],
[0, 1, 3, 4, 10, 15, 17, 23, 26, 28, 29, 30, 32];
[0, 6, 9, 11, 14, 16, 18, 21, 22, 25, 26, 27, 29, 32, 

33, 34],
[0, 2, 4, 8, 11, 12, 13, 18, 23, 26, 29, 30, 31, 32, 33],
[0, 1, 9, 10, 13, 14, 16, 19, 21, 22, 25, 26, 34];

(35; 17, 16, 16, 12; 26)
[0, 1, 2, 6, 9, 12, 14, 16, 17, 18, 19, 21, 23, 26, 29, 

33, 34],
[1, 5, 12, 13, 14, 15, 17, 20, 21, 23, 25, 26, 27, 30, 

31, 34],
[4, 10, 11, 15, 16, 22, 23, 24, 25, 27, 31, 34];

(37; 15, 16, 16, 15; 25)
[0, 2, 3, 5, 10, 11, 12, 16, 21, 25, 26, 27, 32, 34, 

35],
[0, 1, 2, 5, 9, 10, 12, 13, 15, 16, 22, 28, 30, 33, 

34, 35],
[0, 2, 4, 6, 10, 11, 12, 13, 16, 19, 20, 22, 30, 31, 33];

(37; 16, 15, 15, 16; 25)
[1, 4, 5, 6, 9, 12, 13, 14, 23, 24, 25, 28, 31, 32, 

33, 36],
[0, 2, 3, 4, 6, 7, 13, 14, 16, 19, 24, 28, 30, 35, 36],
[1, 5, 7, 8, 11, 13, 14, 15, 19, 26, 28, 30, 32, 33, 

35, 36];

(37; 16, 18, 18, 13; 28)
[1, 3, 6, 11, 12, 16, 17, 18, 19, 20, 21, 25, 26, 31, 

34, 36],
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[1, 2, 7, 11, 14, 15, 17, 18, 23, 25, 26, 27, 28, 29, 
31, 32, 34, 36],

[1, 2, 3, 4, 11, 15, 17, 21, 22, 26, 29, 32, 33];
[1, 2, 4, 6, 9, 11, 12, 14, 18, 19, 20, 21, 22, 23, 

24, 36],
[2, 3, 5, 6, 9, 10, 11, 12, 16, 17, 19, 20, 21, 22, 27, 

31, 33, 35],
[0, 2, 6, 7, 11, 14, 17, 20, 23, 26, 30, 31, 35];

(37; 17, 17, 17, 13; 27)
[0, 2, 3, 5, 6, 8, 9, 15, 16, 21, 22, 28, 29, 31, 32, 

34, 35],
[2, 4, 5, 7, 8, 9, 15, 16, 18, 19, 20, 23, 24, 25, 27, 

29, 33],
[2, 3, 10, 12, 19, 20, 22, 24, 27, 29, 31, 34, 35];
[1, 2, 3, 4, 9, 11, 13, 15, 16, 19, 20, 21, 22, 24, 25, 

27, 28],
[2, 6, 9, 10, 13, 15, 19, 24, 25, 26, 28, 29, 31, 33, 

34, 35, 36],
[0, 3, 5, 11, 12, 13, 17, 20, 24, 25, 26, 32, 34];

(37; 18, 15, 15, 15; 26)
[3, 4, 5, 6, 7, 9, 11, 13, 16, 21, 24, 26, 28, 30, 31, 

32, 33, 34],
[0, 4, 7, 13, 16, 17, 18, 19, 22, 23, 24, 29, 30, 32, 33],
[1, 5, 9, 10, 12, 15, 18, 22, 23, 24, 26, 28, 30, 31, 

33];
[0, 2, 4, 6, 9, 11, 12, 13, 15, 16, 17, 18, 22, 24, 25, 

30, 35, 36],
[1, 4, 9, 13, 16, 17, 20, 21, 22, 23, 24, 31, 32, 33, 

36],
[0, 6, 8, 10, 11, 14, 16, 17, 20, 21, 23, 26, 27, 29, 31];

(39; 17, 17, 17, 15; 27)
[0, 5, 6, 8, 10, 14, 15, 17, 18, 21, 22, 24, 25, 29, 

31, 33, 34],
[0, 3, 5, 6, 12, 13, 14, 16, 17, 18, 22, 27, 30, 33, 

35, 37, 38],
[1, 2, 3, 5, 6, 8, 12, 13, 14, 15, 26, 31, 32, 34, 38];
[2, 3, 7, 9, 10, 15, 16, 18, 19, 20, 21, 23, 28, 30, 

32, 34, 35],
[0, 3, 5, 6, 10, 12, 13, 14, 16, 21, 22, 24, 25, 29, 

30, 34, 36],
[0, 1, 2, 3, 4, 8, 14, 18, 21, 25, 31, 35, 36, 37, 38];

(39; 18, 16, 16, 16; 27)
[3, 4, 5, 7, 8, 10, 12, 17, 18, 21, 22, 27, 29, 31, 32, 

34, 35, 36],
[0, 3, 4, 5, 7, 8, 9, 10, 15, 16, 24, 26, 28, 30, 33, 36],
[2, 3, 4, 6, 7, 8, 12, 13, 15, 16, 23, 24, 29, 31, 35, 

38];
[1, 2, 3, 9, 10, 16, 17, 19, 20, 22, 24, 27, 29, 31, 

32, 33, 35, 36],
[1, 5, 6, 7, 10, 11, 19, 22, 25, 27, 29, 30, 32, 33, 

34, 36],
[1, 7, 10, 11, 12, 13, 17, 19, 20, 22, 26, 27, 28, 29, 

32, 38];

(41; 16, 20, 20, 16; 31)
[1, 2, 3, 9, 11, 15, 19, 20, 21, 22, 26, 30, 32, 38, 

39, 40],
[0, 3, 9, 11, 14, 15, 16, 19, 22, 23, 24, 25, 26, 28, 

29, 30, 32, 35, 37, 40],
[0, 4, 5, 7, 14, 16, 18, 19, 21, 23, 24, 31, 32, 37, 

38, 40];

(41; 18, 19, 19, 15; 30)
[4, 5, 7, 8, 10, 11, 15, 16, 17, 24, 25, 26, 30, 31, 

33, 34, 36, 37],
[3, 5, 8, 9, 11, 12, 16, 17, 18, 19, 21, 22, 23, 26, 

28, 30, 33, 34, 36],
[0, 2, 3, 5, 6, 11, 15, 20, 22, 24, 26, 27, 34, 35, 39];
[3, 5, 6, 9, 10, 11, 13, 15, 16, 26, 27, 31, 33, 35, 

36, 38, 39, 40],
[1, 2, 5, 8, 9, 11, 13, 14, 15, 16, 18, 20, 23, 24, 29, 

30, 31, 32, 40],
[0, 2, 4, 5, 10, 15, 18, 19, 22, 23, 26, 31, 36, 37, 39];

(43; 21, 21, 21, 15; 35)
[0, 1, 2, 3, 4, 8, 9, 12, 14, 19, 22, 23, 26, 28, 29, 

31, 32, 34, 38, 39, 41],
[1, 4, 6, 9, 10, 11, 13, 14, 15, 16, 17, 21, 23, 24, 25, 

31, 35, 36, 38, 40, 41],
[0, 7, 9, 13, 14, 15, 17, 18, 25, 26, 28, 29, 30, 34, 36].

The last example consists of a D-optimal design 
(blocks A and D) and two copies of the Paley differ-
ence set in Z43 (blocks B C). It is taken from the 
paper [7].
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Цель: исследовать более полно, чем это было известно ранее, семейства симметричных матриц Адамара конструкции про-
пусов — симметричной разновидности массива Гетхальса — Зейделя, отличающейся обязательной симметрией одного из блоков 
и равенством двух других, всего четырех блоков. Методы: аналитическая теория уравнений для параметров дифференциальных 
семейств, используемых в теории симметричных матриц Адамара, базирующаяся на теоремах Лиувилля и Диксона. Авторский 
численный метод поиска двух или трех циклических блоков для построения матриц Адамара бициклического типа, или пропу-
сов, который ускоряет классический перебор искомых последовательностей предварительной сортировкой их на непересекающи-
еся сомножества потенциальных решений с помощью хэш-функции. Результаты: получено и классифицировано в таблицы об-
ширное множество новых симметричных матриц Адамара, отличающихся между собой индивидуальными наборами параметров. 
Помимо новизны указанных множеств, достигнута новизна симметричных конструкций на порядках 92, 116, 156, для которых 
такие решения были неизвестны. Для порядка 156 симметричные матрицы найдены впервые. Практическая значимость: 
матрицы Адамара имеют непосредственное практическое значение для решения задач помехоустойчивого кодирования, сжатия 
и маски-рования видеоинформации. Программное обеспечение нахождения симметричных матриц Адамара и библиотека 
найденных ма-триц используются в математической сети Интернет с исполняемыми онлайн алгоритмами. 

Ключевые слова — симметричные матрицы Адамара, массив Гетхальса — Зейделя, пропус-конструкция, циклические диф-
ференциальные семейства. 


